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Abstract

The collisional dynamics of the 62P levels in cesium have been studied utilizing

steady state laser absorption and laser induced florescence techniques. In addition

the production of a blue beam produced by two photon absorption has been observed

in potassium. The collisional broadening rate for cesium, γL, for He, Ne, Ar, Kr,

Xe, N2, H2, HD, D2, CH4, C2H6, CF4, and 3He are 24.13, 10.85, 18.31, 17.82, 19.74,

16.64, 20.81, 20.06, 18.04, 29.00, 26.70, 18.84, and 26.00 MHz/torr, respectively for

the 62P1/2 → 62S1/2 transition and 20.59, 9.81, 16.47, 15.54, 18.41, 19.18, 27.13, 28.24,

22.84, 25.84, 26.14, 17.81, and 22.35 MHz/torr for the 62P3/2 → 62S1/2 transition.

The corresponding pressure-induced shift rates, δ, are 4.24, -1.60, -6.47, -5.46, -6.43,

-7.76, 1.11, 0.47, 0.00, -9.28, -8.54, -6.06, and 6.01 MHz/torr for the 62P1/2 → 62S1/2

transition and 0.69, -2.58, -6.18, -6.09, -6.75, -6.20, -4.83, -4.49, -4.54, -8.86, -9.38,

-6.47, and 0.60 MHz/Torr for the 62P3/2 → 62S1/2 transition. These values have been

compared with the values of other alkalis and the inter-atomic difference potentials

have been determined using the impact approximation. The energy exchange rates

between the two excited states of cesium by collisions with N2, H2, HD, D2, CH4,

C2H6, CF4, and C2F6 have been measured and shown to correlate with both the

rotational energy defect and the vibrational energy defect. And finally, while pumping

from the ground state 42S to the excited 52D and 62S states of potassium, a blue

beam corresponding to the transition 52P → 42S was observed. The effects of input

power and buffer gas pressure where observed.
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COLLISIONAL DYNAMICS OF THE CESIUM D1 AND D2 TRANSITIONS

I. Introduction

Interest in Alkali Lasers

Through the ages Alkali atoms have been of interest for numerous reasons. Lithium,

in the form of lithium carbonate, can be used to treat depression. Sodium, while in

the form of sodium chloride is table salt and sodium nitrate is a primary ingredient in

gunpowder. Potassium is used heavily in fertilizer but in the form of potassium chlo-

rate it is used in explosives. Rubidium and cesium are more rare and are commonly

used in chemical research. But these two heavier alkalis are also used in atomic clocks

for global positioning satellites. In fact, the cesium ground state fine splitting is the

frequency and time standard used in the United States.[60]

The lighter alkalis, sodium and potassium, were discovered using electrolysis in

1807. It was not until the mid 19th century, 1861, when cesium and rubidium was

discovered. These two alkalis were some of the first elements discovered using spec-

trum analysis.[30] The spectral profile of sodium was first seen by Fraunhoffer in his

studies of the solar spectrum, but not labeled as such until Kirchhoff and Bunsen

started to assign spectrum to the elements. It is important to note that because of

the designation of the solar absorption lines the transition between the ground state

and the first excited state of sodium was called the D-Line, naming the major ab-

sorption lines sequentially, A through K. As time passed and technology increased the

D-line was resolved into two separate and distinct lines. This revelation introduced

subscripts (D1 and D2) into their designations. These separate lines still refer to
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sodium but the fine splitting of the 2P state has been resolved. These designations

have held and now all the transitions between 2P1/2 and 2P3/2 to the ground state,

2S1/2, for the alkali are called the D1 and D2 lines, respectively.

These two transitions have become of great interest recently for use in a three

level laser system. Beach and Krupke have proposed the use of diodes to pump an

alkali along its D2 transition and utilized spin-orbit energy transfer to a buffer gas

to transfer the energy from the 2P3/2 state to the 2P1/2 state. This will then lase

along the D1 transition. This process is shown in Fig. 1. While the use of alkalis as

laser is not a novel concept, the idea of using the lowest transitions is. Schawlow and

Townes proposed a potassium-based laser in 1958, but instead of pumping with red

light along the D lines to the 42P state they suggested pumping with blue light to

the 52P state. This excited state will naturally decay down to the 32D and the 52S

states in 0.2 µs. From these states the energy can be funneled into the 42P state, the

upper state of the lasing transition. This process is shown in Fig. 1 for comparison

to Beach and Krupke’s 3 Level Laser system. In 1962, Rabinowitz used this concept

to produce an IR laser. He used a UV source to pump from the 62S to the 82P of

cesium. This immediately created a population inversion between this excited state

and the lower states 82S and 62D, which produced lasing at 7.18 µm. All of these

lasers are possible because of the extremely large cross-sections for absorption in the

alkalis.

The Diode Pumped Alkali Laser (DPAL) is of high appeal for the United States

Air Force. This system has the possibility of providing the power of a chemical

laser, without the logistics trail and the infinite magazine depth. It also provides the

benefits of a solid state laser, without the thermal management issues. The USAF

currently is building the prototype Airborne Laser (ABL) which will utilize a chemical

oxygen iodine laser (COIL). The COIL utilizes the chemical reaction of basic hydrogen
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Figure 1. A general diagram of the transitions used for the laser proposed
by Beach (Orange) and Schawlow (Blue).
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peroxide and chlorine gas to produce an excited state of oxygen, O2(a,1∆). This is

shown in the following reaction:

Cl2(g) +H2O2 → O2(a1∆) + 2KCl + 2H2O. (1)

Due to the similarities in the energy differences, this excited oxygen is used to then

pump atomic iodine to its first excited state. This chemical process is highly efficient

and has produced the high powers needed for a weapon grade system, but this system

requires a long logistics trail to get the basic hydrogen peroxide and chlorine gas to

the battle field. The magazine of such a weapon is limited to the payload of the

airframe. These drawbacks weigh heavily on the practicality of such a system. On

the other hand, a solid-state laser could be powered by the jet engines on an aircraft.

This would make the magazine depth limited to only fuel capacity of the airframe.

But current solid-state laser systems have not achieved the high powers needed to be

deployed in most tactical weapon systems. The inherent problem in solid state lasers

(SSL) is thermal management. Temperature adversely affects the medium and its

capability to lase, being that the medium is solid. This hinders the transport of this

heat away from the medium quickly.

The DPAL system will have the benefit of high powers and efficiencies much like

the COIL. These characteristics have been theoretically determined from the high

slope efficiency and have been demonstrated via intensity scaling with the use of

short-pulsed pumps.[63] Also, because it is currently expected to be pumped with

diodes the infinite magazine depth of SSLs can be expected. The diode pump can

be arranged as needed to deal with the thermal management and the alkali gas will

simply be utilized as a filter to phase up the photons to produce a coherent beam.

The alkali itself will not produce very much heat because of the small energy defect

between the 2P1/2 and 2P3/2 states, shown in Table 1. The heat can simply flow out
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of the system because this will all be accomplished in gas phase.

Table 1. The lasing transitions, pump transitions, and spin-orbit splitting
between the 2P3/2 and 2P1/2 states for each alkali atom, ordered from
smallest to largest mass.

Alkali D1(Laser)
(nm)

D2(Pump)
(nm)

∆E
(cm−1)

Li 670.98 670.96 0.34
Na 589.76 589.16 17.2
K 770.11 766.70 57.7
Rb 794.98 780.25 237
Cs 894.59 852.35 554

Theoretically, the DPAL system is an ideal weapon system for the Department of

Defense, but as the laser is scaled up it will face some challenges. One of these issues

is matching the wide spectral profile of the pump diodes with the narrow absorption

profile of the alkali. Two solutions have been suggested. One solution is to broaden

the absorption profile via collisions with a buffer gas. This solution would require

pressures up to 15 atmospheres to match the bandwidth of typical diodes as well as

extremely well known values for the broadening rates which this work provides for

cesium. The second solution would be to spectrally narrow the diodes with the use of

volume Bragg gratings (VBG). The University of Central Florida, has demonstrated

the use of VBGs with the diodes and have achieved linewidths of 10 GHz at the

rubidium D2 wavelength.[65] This still implies the use of pressure broadening but

reduces the pressures needed to less than an atmosphere.

Another hurdle faced by this laser system is the bottleneck of the spin orbit

energy exchange. As in typical 3-level lasers the rate at which the lasing state is

populated is the limiting factor in the performance of the system. Currently, ethane

is the most popular collisional partner used to collisionally relax the alkali from its

2P3/2 state to its 2P1/2 state. But this buffer gas has produced the degrading side

effect of laser snow and soot. The carbon is then deposited on the windows affecting
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the laser performance. Fortunately with the less massive alkalis and their smaller

energy defect, rare gases can be utilized as an effective energy transfer partener.

Recently a potassium laser using helium was demonstrated by the General Atomics

with collaboration with AFIT.[74] In order for He in a potassium system to produce

the same rate as 300 Torr of ethane in a cesium system, the potassium cell would

have to have a pressure of approximately 2 atm of He. The pressure can be further

lowered by a factor of 0.87, by using 3He with its smaller mass and larger velocities.

The measurement of these rates with cesium has been performed by this work.

The alkalis can not only be a laser medium for an intense red laser light source,

but it can also be a source for blue and infrared light. Recently, it has been shown

that by pumping with two red photons the highly excited S and D states can be

populated.[64] Once these states are populated, an inversion between theses states

and the second P state is created and an IR beam is produced. If pumped hard

enough, it is possible to create a population inversion between the second P state

and the ground state of the alkali. A blue beam was observed in cesium, rubidium,

and potassium. [64, 44] A blue and IR laser would also be of interest to the DoD for

underwater communication and as a countermeasure against heat seeking missiles.

Pressure Broadening

This body of work has measured the broadening and shift rates of cesium with

various buffer gases and has calculated the potential energy differences between cesium

and the buffer gas. These rates and potential energy curves were published in Physical

Review A in 2009 and 2010 and are stated in chapters II, III, and IV. While these

rates contribute directly to the DPAL community for the use of modeling the alkali

laser system, the understanding of potential energy surfaces play a deeper role in the

perception the complexity of the alkali-buffer gas interactions.
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Spin Orbit

This work has also measured the spin orbit energy transfer rates between cesium

and various molecular partners. These cross-sections for atom molecule interactions

are essential for the DPAL 3-level laser models. The ability to recycle each cesium

atom is dependent on the rate the spin orbit energy difference can be transfered to a

buffer gas. If the rate is too slow this will create a bottleneck in the 3 level laser that

may inhibit the creation of a population inversion. It has been shown that ethane has

a large spin orbit energy transfer rate for Rb and Cs, but it has the disadvantage of

creating laser snow and depositing carbon on the windows of the alkali cell. It would

be ideal to find a buffer gas with a high spin orbit energy transfer rate but does not

contain carbon. The values measured have been submitted to Physical Review A and

are shown in chapter V.

Other Possible Alkali Lasers

This work has demonstrated two photon absorption in potassium to produce a

blue beam at the wavelength of the 52P3/2 → 42S1/2 transition. This is made possible

by amplified spontaneous emission (ASE) from the excited state 62S1/2. IR ASE

was confirmed in cesium as part of a collaboration with Sulham.[64] The potassium

blue beam was observed up to 240 Torr and had a threshold of 260 kW/cm2, which

decreased as number density of potassium increased. Similar to the other alkalis, the

relative slope efficiency increased as the number density increased.

An alkali blue laser can provide a means for underwater communication for the

U.S. Navy. In addition, the IR alkali laser could be used to blind missiles that are

heat seeking missiles. The results of this portion of work have been presented and

published with American Institute of Aeronautics and Astronautics (AIAA) and are

discussed in chapter VI.[44]
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II. Pressure Broadening and Shift of the Cesium D1 and D2

lines in Diode Pumped Alkali Lasers

Introduction

The quest for a high power, electrically driven laser with excellent thermal man-

agement, lightweight packaging, and high brightness for tactical military applications

may be realized with the advent of the Diode Pumped Alkali Laser (DPAL). The con-

cept of using a gas phase medium for the phasing of large diode arrays via a highly

efficient, cyclical photon engine combines the best features of electrically driven lasers

with the inherent thermal management advantages of a gas lasers. There are several

technical and scientific advances required to assess and realize the full potential of

these hybrid lasers. Matching the spectral bandwidth of the diode pump source with

the atomic absorption profile is paramount and requires both the narrow banding of

high power diode laser arrays and novel approaches to broadening the gas lineshape.

In the present work, the rates for pressure broadening and line shifts are reported

for both atomic and molecular collision partners using laser absorption and induced

fluorescence techniques.

Hyperfine Structure

The DPAL pump line, D2 52S1/2 → 52P3/2, and lasing line, D2 52P1/2 → 52S1/2,

are the two components of the fine structure doublet, coupling the orbital angular

momentum of the valence electron, L=1 or 0, to the spin angular momentum, S=1/2,

to yield J = L + S and J= 1/2 or 3/2. The fine structure splitting in rubidium is

large, Efs = E(2P3/2) - E(2P1/2) = 237.595 cm−1, and the spectroscopic data for each

line of the doublet is reported separately. The splitting of the fine structure is called

the hyperfine structure, which is the product of the coupling the resulting J with the
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nuclear spin, I (I=3/2 for 87Rb and I=5/2 for 85Rb) with

| J − I |≤ F ≤| J + I | (2)

Based on the quantum selections rules for F, the D2 and D1 lines are composed of six

and four hyperfine components, respectively, for each of the two natural isotopes, as

shown in energy level diagram of Figure 2. The hyperfine structure is described by

the magnetic dipole and electric quadrupole interactions, yielding an energy splitting

of:

Ehfs (F ) = Efs + A
C

2
+B

3
4
C(C + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(3)

where

C ≡ F (F + 1)− I(I + 1)− J(J + 1) (4)

A = magnetic dipole constant (5)

B = electric quadrupole constant (6)

The corresponding hyperfine spectroscopic constants for Rb are provided in Table 2.

Stimulated Emission and Absorption Cross Sections

The hyperfine splitting is large enough that individual F → F transitions from

the ground 2S1/2F state to the excited 2P1/2F state are resolved in the absorption

spectrum for the Rb D1 line of Figure 2. This spectrum was recorded using a narrow
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Figure 2. Hyperfine structure of the Rb D1 and D2 lines.

Table 2. Rubidium Hyperfine Spectroscopic Constants.[42, 7, 6, 14, 57,
10]

87Rb 85Rb
I 3/2 5/2

fiso 0.2783 0.7217
2S1/2

2P1/2
2P3/2

2P3/2
2P1/2

2P3/2

A (MHz) 3417.34120642 406.2 84.852 1011.910813 120.72 24.99
B(MHz) ——— —– 12.611 ——— —– 25.88

gj 2.00233113 0.6667 1.3362 2.0023313 0.6667 1.3362
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band (< 1 MHz) ring Ti-Sapphire laser for a rubidium cell at T = 310 K with

50 Torr of helium[50]. The total optical cross-sections for absorption includes the

contributions from each hyperfine transition in both isotopes, weighted by the fraction

of the sample in the absorbing state:

σ (ν) =
∑
F ′′,iso

σ (ν; νF ′←F ′′) fF ′′fiso

=
∑
F ′′,iso

(
gJ ′

gJ ′′

)(
λ2

8π

)
(A21SF ′F ′′) gV (ν, νF ′→F ′′) fF ′′fiso (7)

where

gJ = 2J + 1

νF ′←F ′′ = line center for the F ′ ← F ′′ hyperfine component

λ = c
ν

A21 = 1/τR = spontaneous emission rate

SF ′F ′′ = hyperfine line strength for the F ′ ← F ′′ component

gV (ν, νF ′←F ′′) = Voigt lineshape centered at νF ′←F ′′

fiso = relative natural abundance

fF ′′ = statistical distribution of population among F ′′ states

= (2F ′′+1)e−E(F ′′)/kT∑
F ′′ (2F

′′+1)e−E(F ′′)/kT

Table 3 provides the key spectroscopic data for the D1 and D2 transitions. There

is small isotopic shift, δiso, for both the D1 and D2 lines.

The relative intensities of the four F → F transitions for each of the two isotopes
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Table 3. Lineshape Data for Rubidium D1 and D2 Transitions[61]

Property D1(2S1/2 →2 P1/2) D2(2S1/2 →2 P3/2)

λ(nm) 794.9788501[50] 780.2412097 [50]
δiso 87.8 ± 1.9 [50] 87.4 ± 1.0 [50]
τR (ns) 27.7 [66] 26.24 [66]
λ2/ (8πτR) 9.08× 10−3 9.23× 10−3

γHe (MHz/Torr) 18.9 ± 0.2[51] 20.0 ± 0.14[51]
δHe (MHz/Torr) 4.71 ± 0.04[51] 0.37 ± 0.06 [51]
γCH4 (MHz/Torr) 29.1 ± 0.8[51] 26.2 ± 0.6[51]
δCH4 (MHz/Torr) -7.92 ± 0.10 [51] -7.00 ± 0.20 [51]

Figure 3. Absorption spectrum of Rb D1 line: (•) Observed by tunable
dye laser at T=311K and 50 Torr of helium, ( ) simulation of equa-
tion (7), (−−−) Voigt profile for each hyperfine component. The stick
spectrum indicates the relative amplitudes of each hyperfine component.
Frequency is reported relative to low pressure reference cell.
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Table 4. Ruibidium line strengths between hyperfine transistions.

SF ′,F ′′ 87Rb 85Rb
F 1 2 F 2 3

D1
2S1/2 → 2P1/2 1 1/6 1/2 2 2/9 5/9

2 5/6 1/2 3 7/9 4/9
0 1/6 — 1 3/10 —

D2
2S1/2 → 2P3/2 1 5/12 1/20 2 7/18 5/63

2 5/12 1/20 3 14/45 5/18
3 — 7/10 4 — 9/14

is specified by the hyperfine line strengths:

SF ′,F ′′ = (2F ′′ + 1)(2J ′ + 1)

 J ′ J ′′ 1

F ′′ F ′ I


2

(8)

where the final array is a Wigner 6-J symbol. Table III provides the line strengths for

the D1 and D2 lines for each isotope. Note the line strengths represent the fraction of

absorption partitioned to various final states so that the following sum rule is obeyed:

∑
F ′

SF ′,F ′′ = 1 (9)

Figure 3 includes an indication of each of the hyperfine line strengths, SF ′,F ′′ , weighted

by the isotopic abundances, fiso, and Boltzmann distribution factors, fF , in the stick

spectrum. The more abundant 85Rb isotope exhibits a smaller 2S1/2 hyperfine split-

ting so that the four stronger components lie toward the center of the spectral feature.
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Linshapes

The Voigt lineshape is specified by the sample temperature, T, and the pressure

broadening associated with each collision partner:

gV (ν, νF ′′←F ′) =
M

2πkBT

∫ ∞
−∞

gL(ν + ν0
vz
c

)exp

(
−Mv2

z

2kBT

)
dvz (10)

with

gl(ν) =
∆νl

2π
[
(ν − ν0 +

∑
i δiPi)

2 +
(

∆νl
2

)2
] = Lorentzian lineshape (11)

where:

M = mass of Rb atom

kB = Boltzmann constant

T = gas temperature

νL = 1
2π

(
1
τR

+
∑

i γiPi

)
= Lorentzian (homogeneous) linewidth (FWHM)

TL = temperature at which the broadening rate, γ, is measured

Pi = partial pressure of buffer gas i

vz = atom velocity in the direction of light propagation

c = speed of light

The rates for pressure broadening, γi, and collision induced shifts, δi, for both

helium and methane are included in Table 3. Note that these rates are temperature

dependent, due to the dependence of collision frequency on density of the collision
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partner. For example, the rate for pressure broadening by the ith buffer gas is:

Ri = σigNi = σi

(
8kBT

πµi

)1/2(
Pi
kBT

)
= γi (T1)Pi

(
T

T1

)1/2

(12)

where

σi = collision cross-section for Rb with buffer gas i

µi = reduce mass for Rb - ith specie pair =
mRbmi

mRb +mi

(13)

The Maxwellian speed distribution within the integrand of equation (2.5) is charac-

terized by the corresponding Doppler width (FWHM):

∆νD = ν0

√
8kbT ln(2)

Mc2
(14)

which is ∆νD = 514 MHz for Rb D1 line at T=311 K. By summing over each of the

hyperfine components as described in eqn. 3, the total absorption profile is simulated

and compared to the experimental result in Figure 3. The Voigt profile for each

hyperfine component, weighted by the relative amplitude, is also shown in Figure

3. The resulting predicted cross-section agrees quite favorably with the observed

spectrum. There is a small variation in incident laser power across the spectral scan,

leading to the small systematic difference. The absolute comparison depends on the

Rb concentration, according to Beers law:

(
I

I0

)
= eσNl (15)

where the absorption path length is l = 1 cm and the rubidium concentration, N ,
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has been computed from the vapor pressure at T = 318 K to be 1.10519× 10−6 Torr,

corresponding closely to the apparatus exterior wall temperature of T = 311 K. At the

Figure 4. ( ) Absorption cross-section for D1 line with 400 Torr
of He and 100 Torr of methane from simulation of equation (7). Also
shown: (−−−) a single lorentzian profile with the same broadening and
shifting rates, and ( ) least square fit of the simulation to a single
Lorentzian profile.

higher pressure typically employed in the Diode Pumped Alkali Laser (DPAL) system,

the distinct features associated with the hyperfine structure blend into a single, but

somewhat asymmetric line, as shown in Figure 4. Also shown in Figure 4 is a single

Lorentzian without hyperfine splitting with the same broadening rates. Neglecting

the additional effective broadening due to hyperfine structure overestimates the peak

cross-section by 13.2 % for the He: Ethane = 400:100 Torr case. This difference is

accentuated at lower pressures and Figure 5 presents the ratio of the peak cross-section
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Figure 5. Ratio of the peak cross-section for the hyperfine simulation
to the peak cross-section using a single Lorentzian profile with the same
broadening rate for the (�)D1 and (•)D2 lines.
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for the hyperfine split transition to the same cross-section, neglecting the hyperfine

splitting. Only for total pressures of several atmospheres is the Lorentzian profile

without hyperfine splitting adequate. It is possible to fit a single Lorentzian profile

to the hyperfine split lineshape, as shown in Figure 4. Such a fit yields a linewidth

of ∆νh = 12,205 ± 20 MHz which is larger than that predicted without hyperfine

splitting, but less than the effective width predicted by the hyperfine structure. As a

result, the peak cross-section is somewhat larger than would be observed.
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III. Pressure Broadening and Shift of the Cesium D1 Lines

Introduction

The lineshape, broadening, and shift of the atomic hyperfine profiles due to col-

lisions with other atoms or molecules have been studied thoroughly and numerous

reviews are available [2, 23]. The alkali’s have been of recent interest as a lasing

medium for diode pumped gas lasers. These alkali lasers were proposed by Krupke

in 2003 and demonstrated by Beach in 2004, but this system may be considered an

adaptation of a system first proposed by Schawlow and Townes in 1958 and built by

Rabinowitz in 1962 [32, 8, 55, 47]. This current effort will utilize large diode bars to

pump the D2 transition of the alkali and lase along the D1 transition. This Diode

Pumped Alkali Laser, DPAL, is a three level laser system that depends heavily on

saturation of the pumped state, therefore the linewidth matching of the D2 transi-

tion with the diode bar or stack is crucial. Diode bars and stacks typically have a

linewidth of 30 GHz which would force the cesium to be exposed to pressures up to

10 atm. The DPAL models are then dependent on the accuracy of the information

on the collisional effects on the alkali. As part of a study to measure the spin-orbit

energy transfer between the 62P1/2 and 62P3/2 states, the broadening and shift rates

for the 62P1/2 ← 62S1/2 transition have been measured.

With the exception of two recent studies, the collisional effects on the cesium

D1 transition have not been updated since 1990 [4, 15, 25]. Andalkar utilized laser

absorption spectroscopy in 2001 to study the effects of N2 and He on Cs up to 160

Torr. Andalakar was able to achieve errors less then 1.2% [4, 3]. In 2008, Couture

utilized a flash lamp and spectrometer to measure the shift and broadening rates

of He, N2, and 129Xe with errors less than 3% [15]. One study in 1990, by Inoue,

produced results with errors less than 1.6% [25]. The Inoue study utilized laser
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absorption spectroscopy and was limited not by the measurement of the widths of

the spectrum but the measurements of the pressure, which had an error of 10%.

The studies prior to 1990 produced results with errors around 20%, and most of

these studies were performed at pressures less than 160 Torr [21, 11, 12, 59, 26]. In

addition to these experimental values for the collisional effects on cesium, Jacobson

theoretically determined the values for broadening and shift rates for cesium with

Argon, Krypton, and Xenon from the interatomic potentials [27].

The rates that are currently available from these works vary greatly between each

other. In the case of helium there is a discrepancy of 10 MHz/Torr for the broadening

rate and for nitrogen there is a 11 MHz/Torr difference. Andalakar pointed this out

in his study in 2001, but his study only included nitrogen and helium. This study

provides updated rates for all the noble gases and H2, HD, D2, N2, CH4, C2H6, CF4,

and 3He. Of which, HD, D2, CH4, C2H6, CF4, and 3He have never been measured.

The lighter isotope of helium has been predicted from theory by Couture using the

ratio of reduced masses and the rate for 4He. Also, no previous study witnessed any

non-voigt lineshapes at low pressures and therefore did not determine if it has an

effect on the collisional broadening and shift rates.

Experiment

This experiment utilized a Coherent MBR-110 Ti:Sapphire ring laser tuned to 894

nm and scanned over 35 GHz. The ring laser, which was pumped by a Coherent Verdi

V-18 diode laser, has a linewidth less than 100kHz with a power less than 3.5 Watts.

This beam was greatly attenuate (< 1µWatts) before reaching the test cell to avoid

any saturation broadening and to stay within the Beer’s law regime of absorption.

The scan time was converted to the frequency utilizing an etalon with a free spectral

range of 299.45 MHz, which was calibrated using the extremely well known hyperfine
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spacing of the D1 line. The output of the ring laser was amplitude modulated, at a

frequency of 1505 Hz, and coupled into a trifurcated fiber bundle. Each branch of the

bundle was focused onto a different Hamamatsu silicon photodiode (model S2281-04).

The photodiodes were employed to record the incident intensity on the cesium cells,

a reference spectrum for an absolute frequency measurement via a low pressure cell,

and the transmitting intensity of the test cell while observing the changing absorption

profile.

Each cell was constructed from a one inch cylinder made of pyrex glass with an

ampoule of cesium attached underneath. The cells were affixed to the gas handling

system with UltraTorr seals. This allowed for pressure measurements at the time of

the scan while previously used prefilled cells only allowed for pressure measurement

at the time it was filled, which created systematic error in addition to the pressure

measurement error. The gas handling system also reduced the possibility of exposure

to air and moisture, which would result in contamination of the cesium sample and

could result in fire and creation of the very strong base, CsOH.

The cell was placed in a temperature controlled aluminum block, with the ampoule

exposed underneath. This configuration of the cesium ampoule and the oven was

designed such that they could be controlled at two different temperatures, allowing for

better control of the number density of the cesium in the upper cell. The temperature

controller maintained the temperature within 1◦C. The vapor pressure at the highest

temperature (333 K) was 47.25±3.86 µTorr [61]. The control of the temperature

and number density was import to control the Doppler width and to avoid self-

absorption issues at higher temperatures. Early on in the experimental process higher

temperatures were used and this effect was seen in the relative amplitudes of the

hyperfine spectrum at temperatures over 100◦C.

Cell pressure was monitored by MKS model 690A capacitance manometers with
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heads for 1000, 100, 10, and 1 Torr for cell pressures ranging from under 1 mTorr to

300 Torr. The cesium was 99.98% pure and all gases had a purity greater than 99.9

% purity, with the one exception of HD which had a purity of 97.3 %.

Verdi 
V‐18 

λ = 532 nm 

Ti:S 
Ring Laser 
λ = 894 nm 

N.D. 
Filter 

Cs 
Reference 

Cell Lock‐in 
Amplifier 

Trifurcated 
Fiber 
Bundle 

Cs 
Test Cell 

Lock‐in 
Amplifier 

Lock‐in 
Amplifier 

Chopper 

Figure 6. Experimental apparatus for laser absorption spectroscopy.

As shown in Figure 6, phase sensitive detection was employed to monitor the

transimitted laser intensities utilizing Stanford Research Systems lock-in amplifiers,

model SR850. The recorded transmitted intensities, I, were ratioed with the incident

intensity, I0, which removed the low frequency power fluctuation from the laser. A

small linear background was observed over the 35 GHz scan of the ring laser, which

had a relatively small slope in comparison to its offset, 1.4 × 10−3 %. This was

mathematically removed from the known absorption profile during the numerical

fitting of the spectrum.

Results

The hyperfine spectrum of the cesium D1 transition is shown in Figure 7, where the

larger ground state splitting (9.192631770 GHz) and the smaller 2P1/2 state splitting
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(1.167680 GHz) is observed [61]. In Figure 7, the lineshape profile is shown at multiple

pressures for 3He and is a typical demonstration of all buffer gases and spectrums.

Each spectrum, which has an average signal to noise ratio of 700, was collected over 3

minutes and consist of over 100,000 data points. Each individual hyperfine component

is observed at 0-100 Torr and, as expected, becomes more convoluted as pressure

increases but the larger ground state hyperfine splitting is still evident at 300 Torr.

The hyperfine profile plays a significant role in the total lineshape of the transition

spectrum even at 1 atmosphere [43]. In the sample spectra shown in Figure 7, the 3He

spectra is slowly blue shifted, which is only observed for the lighter species studied

which also includes, He, H2, HD, and D2.
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Figure 7. The cesium D1 hyperfine lineshape pressure broadened by
3He from 10-300 Torr (in steps of 10 Torr) with the assigned (F’←F”)
hyperfine transitions.
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The Lorentzian width and line center were determined from the absorption profile,

by a numerical fit of the spectrum to a set of four Voigt lineshapes:

A = −Ln
(
I

I0

)
=c0 + c1ν + c2

4∑
i=1

aiV (νi + δν,∆νL; γD), (16)

where c0,1 are the coefficients for the linear background and c2 is the absolute ab-

sorbance constant. The absorbance, A, is defined as σln, where σ is the cross-section,

l is the path length of the cell, and n is the number density. Each of the four hyper-

fine lines have been assumed to share the same Doppler, γD, and Lorentzian width,

∆νL. Initially, the Lorentzian widths were allowed to vary but at low pressures they

were alway within the error bounds of the other hyperfine lines. Both widths were

measured as full width half max, FWHM, values. The Doppler width was calculated

via the formula:

γD = 2 · ν
√

2 · ln(2)
kbT

mc2
, (17)

where ν is the frequency, kb is the boltzmann constant, T is the temperature, m is

the mass, and c is the speed of light. At the maximum temperature, 338 K, for this

experiment the Doppler width is 384 MHz and the hyperfine lineshape was constrained

to have this calculated value of the Doppler width for its corresponding temperature.

The hyperfine spectrum was also assumed to share a single spectral shift, δν, and each

hyperfine line position, νi, is well known. A normalized Voigt profile, V, which utilized

each of the known hyperfine linestrengths, ai, was employed. The linestrengths are

calculated from product of the fractional Boltzmann population of the ground state

and the transition strength, which are shown in Table 5. The Voigt shape term was

found to have a value of unity (∆νL = γD) at a pressure of 20 Torr with an average

broadening rate of 20 MHz/Torr.

Several fits to equation (16) to the observed spectra, with corresponding fit resid-
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Table 5. Cesium hyperfine
transition strengths for the
D1 transistion.

Transition Strength
SF F ′ (unitless)

S4 4 5/12
S4 3 7/12
S3 4 3/4
S3 3 1/4

uals, are provided in Figure 8. The signal-to-noise is about 1500, allowing for an

observation of the lineshape well in to the wings, with scan range of more than 130

Doppler widths. At pressures about 80 Torr, the average fit residuals are unstruc-

tured and about 10−5 %. For the lowest pressures (P < 80 Torr) a small systematic

deviation from the Voigt profiles is observed. Allowing greater flexibility in the fit-

ting equation (16) by varying the Doppler width, relative Lorentzian widths of the

hyperfine components, or the hyperfine line strengths does not significantly reduce the

structured residuals. Line narrowing due to velocity changing collisions was examined

using several forms of the Gallatry profile [18, 19]. While the qualitative features of

the residuals are indeed matched, further analysis is required to fully characterize

the rates for the velocity changing collisions. The effects of the small residuals at

low pressures on the pressure broadening and the shift rates is negligible as discussed

below. Prior studies of the O2 A band exhibited line narrowing also demonstrate the

minor effects on the reported Lorentzian fit parameters [49].

The extracted shifts, δν, and Lorentzian width, ∆νL, are displayed as a function

of pressure with various non-reactive collisional partners in Figs. 9 and 10. A linear

fit of the data was performed and the extracted slopes are the shift and broadening
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Figure 8. A sample of the resultant fits with residuals to equation (25)
for the D1 transition under the influence of 3He at 20, 40 , 60, and 80
Torr.

26



rates. This corresponds to the following formula for the Lorentzian width:

∆νL = γP + γN , (18)

where γ is the broadening rate for the buffer gas, and γN is the natural width. The

natural width is 4.575 MHz, which was calculate from the known lifetime of 34.791

ns. The natural line width was used for the y-intercept and was fixed for the weighted

linear fits that were performed on the data. Similarly, the shifts were fit to a line but

with an intercept of 0 and the slope is the shift rate, δ.

The resultant broadening and shift rates with their corresponding slope fit errors

are shown in Tables 6 and 7. The rates listed were determined from the fit of a

line with a fixed y-intercept. In other fits, the y-intercepts was allowed to vary and

on average varied 0.06 MHz/Torr which is less than the average standard deviation.

Also, the average y-intercept parameter was 2.25 MHz with an error of 9.89 MHz. The

natural linewidth lies within the error bounds of the y-intercept parameter. Secondly,

to determine the effect of the systematic residuals on the width and shift rates the

points extracted from spectrum with this effect in the residuals were removed from

the fit of equation (18). This produced on average no overall change of the slope of

the line and all values for the broadening and shift rates were still well within the

error bounds reported in Tables 6 and 7.

The only other major contributing factor to the total error was from the pressure

measurements, each of which had an error of 0.08%. The slope error was determined

from a weighted fit of the data, where the weights were determined from the reciprocal

of the Lorentzian width error. The error in the width and shifts was less than 0.34%

on average.
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(a)

(b)

(c)

Figure 9. D1 hyperfine profile shift as a function of pressure of (a) the
noble gases, (b) various hydrogen isotopes, and (c) several molecules.

28



(a)

(b)

(c)

Figure 10. D1 hyperfine profile broadening as a function of pressure
of (a) the noble gases, (b) various hydrogen isotopes, and (c) several
molecules.
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Table 6. Measured values for the broadening rate for the D1 transition
compared to the previous results.

Current Work Previous Work
γ1

a γ2 γadj
b Ref.

Gas T1(K) MHz/Torr T2(K) MHz/Torr MHz/Torr

He 323 24.13±0.07 294 26.21±0.31 25.42 [4]
295 19.49±1.35 18.62 [12]
393 28.42±1.03 31.34 [15]

3He 323 26.00±0.05 393 21.71±0.70c 23.94 [15]
Ne 313 10.85±0.02 295 10.13±0.86 9.75 [12]
Ar 313 18.31±0.16 295 19.64±0.23 19.06 [12]

295 14.99d 14.55 [27]
Kr 313 17.82±0.05 295 19.84±2.5 19.26 [11]

295 15.29d 14.84 [27]
Xe 313 19.74±0.08 295 21.49±2.60 20.86 [11]

295 17.09d 16.59 [27]
H2 328 20.81±0.09 295 40.42±6.20 39.24 [11]
HD 318 20.06±0.12 — — — —
D2 318 18.04±0.04 — — — —
N2 318 15.82±0.05 294 19.51±0.06 19.07 [4]

323 16.36±0.02 295 30.93±5.71 29.33 [12]
333 15.66±0.08 393 14.73±0.69 16.00 [15]

CH4 333 29.00±0.10 — — — —
C2H6 331 26.70±0.03 — — — —
CF4 318 18.84±0.05 — — — —

a Error from a weighted linear fit only. b See Eqn. (21) c Calculated value from 4He.
d Calculated from theoretical interatomic potentials.
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Table 7. Measured values for the shift rates for the D1 transition com-
pared to the previous results.

Current Work Previous Work
Buffer Temp. δa Temp. δ Ref.
Gas (K) (MHz/Torr) (K) (MHz/Torr)

He 323 4.24±0.02 294 4.46±0.03 [4]
295 6.61±1.00 [12]
393 4.45±.69 [15]

3He 323 6.01±0.01 393 5.82±1.03b [15]
Ne 313 -1.60±0.01 295 -2.88±0.09 [12]
Ar 313 -6.47±0.03 295 -8.73±0.4 [12]

295 -5.4c [27]
Kr 313 -5.46±0.01 295 -2.65±0.10 [12]

295 -5.4c [27]
Xe 313 -6.43±0.01 295 -8.09±1.2 [12]

295 -6.3c [27]
H2 328 1.11±0.01 295 2.25±0.19 [12]
HD 318 0.47±0.03 — — —
D2 318 0.0009±0.00004 — — —
N2 318 -7.69±0.01 294 -8.23±0.02 [4]

323 -7.71±0.01 295 -7.38±0.11 [12]
333 -7.41±0.01 393 -8.90±0.69 [15]

CH4 333 -9.28±0.02 — — —
C2H6 331 -8.54±0.01 — — —
CF4 318 -6.06±0.01 — — —

a Error from a weighted linear fit only. b Calculated value from 4He.
c Calculated from theoretical interatomic potentials.
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Discussion

In general, the present broadening rates are in approximate agreement with all but

the earliest of the prior work. However, a detailed comparison requires an assessment

of the temperature dependence. These rates are certainly influenced by differences in

the average relative speed, g, of the collision pairs, and may be further modified by

an energy dependence to the cross-section, σ: [62]

γ =
N

P

∫ ∞
0

σ(g)gf(g;T ) dg, (19)

where N is the number density and P is the pressure. The temperature dependence

of the Maxwellian speed distribution, f(g;T ), and the relative speed,

g =
√

8kbT/πµ, (20)

where µ is the reduced mass of the collision pair, leads to a temperature dependence

of the broadening rate often described as [28]:

γ2 (T2) = γ1 (T1)

(
T1

T2

)n
. (21)

Note that the collision rates are dependent on concentration and the pressure is

related to the concentration via another temperature factor, P = nkBT . If the

cross-section is independent of speed, γ ≈ gσ and n = 1/2. Table 6 provides the

broadening rates scaled to the current temperatures for comparison. A test of the

energy independence of the cross-section is best afforded by the current temperature

dependence of the nitrogen data provided in Figure 11, which shows no change in the

cross-section of nitrogen as temperature is increased over a small range.

The shift rates are also in agreement with the previous studies, but a direct com-
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Figure 11. The cross-section for broadening (•) and shift (•) of Cs-N2

interaction at three different temperatures.
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parison is difficult with current data. These rates can be calculated from the cross-

section and the velocity distribution, but in the case of the shifts, the cross-section

may have a more significant energy dependence. So, the assumption used for the

broadening rate comparison cannot be made and thus the value of n 6=1/2. Couture

attempted to determine the value of n for his rates utilizing both his and Andalakar’s

data [15]. Couture calculated the value for He to be 1.6±.5, while this current study

has shown the value for n in the Cs-N2 interactions is approximately 1/2. With such

limit amount of data and large error bounds, further study is needed.

Equations (19 & 20) have been utilized by Couture to show a means for calculating

the rates for similar atoms with slight differences in mass, as is the case for 4He and

3He. This mass dependence arises from the relative speeds in equation (20) and can

be expressed:

γ2 (T2) = γ1 (T1)

(
µ2

µ1

)1/2

. (22)

Employing this expression Couture calculated the value within 1.7 MHz/Torr of the

value obtained in the laboratory. This difference may again be explained by an energy

dependence within the cross-section which may depend on the individual atomic

potentials.

From the rates themselves the inter-atomic potentials can be calculated. These

potentials can be determined by using the ratio of the broadening and shift rates and

the impact approximation[54]. Assuming the potentials have a Leonard-Jones form:

V (R) = C12R
−12 − C6R

−6, (23)

where R is the interatomic separation and C6 and C12 are the coefficients for the R−6

and R−12 parts of the potential respectively. The broadening and shift rates have

been analyzed before utilizing this approach [23]. The potentials derived from this
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work are shown in Figure 12. These curves compare closely to those of Rotondaro’s

work with rubidium [51]. This comparison is shown in Figure 13, with slightly smaller

interatomic distances (1.4-2.6 Angstroms) and binding energies down to 0.16 meV of

N2 up to the repulsive potential of 3He. Yet, this model has ignored the effects of

rotational degrees of freedom, non-spherically symmetric potentials, spin-orbit energy

transfers, and any curved trajectories.

The impact approximation and the Leonard-Jones potential suggests a linear cor-

relation between the probability per collision for phase changing collisions and polar-

izability. The present result are consistent with this prediction and is illustrated in

Figure 14. The ratio for the gas kinetic cross-section:

σg = π · (rCs + rbuffergas)
2 , (24)

were evaluated from reference [24]. The polarizability for the buffer gases was found

in reference [5]

Conclusions

The reported rates for collision induced line broadening and shifts for the cesium

D1 line with errors of about 0.3% enable enhanced accuracy in modeling the per-

formance of Diode Pumped Alkali Lasers. Conversion of the observed rates to the

interatomic potential unifies the results for a wide range of buffer gases and enables

the comparison to another heavy alkali; Rb. The effects of the line narrowing are

observed at low pressures, further analysis is needed to discern the role of velocity

changing collisions.
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(a)

(b)

(c)

Figure 12. The Leonard Jones potentials for the Cesium D1 transis-
tion with (a) the noble gases, (b) various forms of hydrogen, and (c) an
assortment of molecules.
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(a)

(b)

Figure 13. Comparison between the well depths (a) and the interatomic
separation (b) of cesium and rubidium.

37



Figure 14. Correlation of the probability for phase changing collisions in
the D1 transition with dipole polarizability of the collision partner.
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IV. Pressure Broadening and Shift of the Cesium D2

Transition

Introduction

The efficiency and power scaling of solid state lasers has been dramatically im-

proved by replacing flash lamp excitation with high power diode bars and stacks [33].

Extending the application of diode pumping to high power gas phase lasers offers

improved thermal control of the gain medium and enhanced beam quality, but re-

quires matching of the relatively broad spectral width of the diode pumps to the very

narrow gas phase absorption features. A prominent approach to such a system, the

Diode Pumped Alkali Laser (DPAL), was demonstrated by Krupke et al in 2003 and

by Beach et al in 2004 [32, 8]. Indeed, the remarkable optical properties of the alkalis

allows for efficient phasing of many diodes via: (1) optical excitation of the first 2P3/2

state on the D2 transition, (2) collisional relaxation to the spin-orbit split 2P1/2 state,

and (3) lasing back to the ground state along the D1 transition. A single alkali atom

can be cycled in this system at rates exceeding 1010 s−1 [40].

Typical diode bars have a linewidth of ≈30 GHz requiring gas pressures of up

to 10 atmospheres for efficient absorption. Recent success in narrow banding diode

bars using external volume Bragg gratings appear to enable sub-atmosphere pressures

for the DPAL system [65]. Alternatively, optically pumping transient alkali-rare gas

molecules to dissociative state which populates the upper laser level has also been

recently demonstrated [48]. In all cases, the collision induced broadening and shift

of the alkali D1 and D2 lines are key to laser performance. The ideal buffer gas

in these laser systems should offer rapid spin-orbit relaxation rates, no quenching,

and minimal reactivity, in addition to the effective lineshape broadening. As part

of a program to develop the spectroscopic and kinetic database for these lasers, we
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recently reported the collisional broadening and shifting of the D1 line in Cs [46].

This paper reports on a continuation of this study for the pump transition on the Cs

D2 line.

The lineshapes for the Cs D2 transition have been studied in some detail from

1966 through 2008 [21, 12, 4, 15]. The most accurate report using laser absorption

spectroscopy is limited to helium and nitrogen collision partners [4]. The variations

in reported broadening and shifting rates are significant. For example, the reported

broadening by Xe differs by more than 30 MHz/Torr [12, 15]. Both blue and red

shifts have been reported for He [21, 15]. The reported rates for molecular collision

partners is rather limited and the rates for methane, ethane, and tetrafluoromethane,

key DPAL collision partners, are not available. The rates for 3He have been predicted,

but not observed [15].

A summary of experimental observations regarding the broadening and shift rates

for all the alkali atoms offers several trends: (1) the broadening rates for D2 lines are

normally slightly greater than D1 line and (2) for blue shifts, the effect on the D1 line

is greater than the D2 line [23]. The present work seeks to explore these trends for

Cs by comparing the current results to our recent study of the D1 lineshapes [46].

Experiment

The apparatus for this experiment is similar to our recent report on the Cs D1

line [46]. The Coherent MBR-110 Ti:Sapphire ring laser was tuned to the wavelength

of the D2 transition, 852 nm, and scanned 32 GHz. A Fabry-Perot etalon, with a

300 MHz free spectral range and held at room temperature, monitored the frequency

of the scanning ring laser. The free spectral range of the etalon was calibrated for

every scan by employing a cesium reference cell. The ring laser provided up to 3

Watts with a linewidth less than 0.1 MHz and to avoid saturation broadening the
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beam was heavily attenuated to < 1µW. A trifurcated fiber bundle was employed to

transport the beam, and to randomize the polarization. One end of the fiber was

focused through a 1 inch long low pressure cell that was temperature contolled to 313

K as a frequency reference. A second branch of the fiber transmitted the light through

another identical cell at the same temperaure, where the pressure of the buffer gas

was varied between 10 and 330 Torr. The final branch of the trifurcated fiber bundle

monitored the incident laser power. The beam was amplitude modulated, at ≈1kHz,

and detected with Hamamatsu PhotoDiodes coupled to Stanford Research SRS850

lock-in amplifiers. Pressure was monitored with MKS capacitance manometers with

an accuracy of 0.08%.

Results

The hyperfine spectrum of the cesium D2 transition is shown in Figure15 a, where

the larger ground state splitting (≈9.1926 GHz) is readily resolved. The Doppler

width at T = 313K is 386 MHz and the hyperfine splitting of the 2P 3
2

ranges from

151 to 251 MHz and is not resolved [61]. Figure 15 b provides a simulation of the

individual hyperfine structure of the F” = 3 components with a comparison to a low

pressure data set. The lineshape profiles are broadened up to 6.32 GHz and shifted

by as much as -2.08 GHz as the nitrogen is increased by 330 Torr. Each spectrum,

which has an average signal to noise ratio of 700, was collected over 3 minutes and

was sampled at over 100,000 spectral frequencies. The ground state splitting of the

D2 transition is evident at all pressures observed in this study. The ground state

splitting therefore plays a significant role in the total lineshape of both the D2 and

D1 transitions even for pressures of an atmosphere [43]. Similar spectra were recorded

for each of the buffer gases in this study. A blue shift was observed for only the lightest

collisional partners, He and 3He. The lightest molecular collisional partners H2, HD,
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and D2 induced a slight red shift, in contrast to the blue shifts observed previously

for the D1 transistion [46].

The full D2 line is composed of six hyperfine components. The absorbance, A, is

represented by a summation of Voigt profiles, V, for each component:

A = −ln
(
I

I0

)
=c0 + c1ν + c2

6∑
i=1

aiV (νi + δν,∆νL; ∆νD), (25)

where

νi = line center frequency at zero pressure for the ith hyperfine component

δν = collision induced shift common for all hyperfine components

∆νD = 386 MHz = Doppler width (FWHM) contrained at T = 313K

∆νL =Lorentzian width (FWHM)

The absorbance measured from the ratio of the transmitted intensities, I, and the

incident intensities, I0. The absorbance is also defined as A = σlN where σ is the

absorption cross-section, l = 2.5cm is the cell path length, and n ≈ 2 × 1011cm−3 is

the Cs number density. Due to the extremely small vapor pressure of cesium, the self-

broadening and shifts are assumed to be negligible. A small baseline, associated with

a slight linear background, is accounted for with the fit constants co < 3.8×10−3 and

c1 < 1.44×10−6GHz−1. The values for the background are similar to those found for

the D1 spectrum [46]. The relative line strengths of the hyperfine components, ai, are

constrained to the lineshapes reported in Table 8. The parameters for numeric fit are

limited to the collsion induced shift, the broadening rate, the absolute absorbance,

c2, and the small baseline.

Examples of the non-linear least-squares fit of equation (25) to three of the N2
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Figure 15. (a)The observed cesium D2 lineshape pressure broadened
by N2 from 10-300 Torr and (b) simulation of components F ′′ = 4 to
F ′ = 3, 4, 5 components with a set of data at low pressure.
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Table 8. Cesium hyperfine transition strengths for the D2 transition.

Transition Relative Line Strengths , ai
SF F ′ (unitless)

S4 5 11/18
S4 4 7/24
S4 3 7/72
S3 4 15/56
S3 3 3/8
S3 2 5/14

broadened spectra are shown in Figure 16. The fit residuals are < 8.1% across 55

Doppler widths, except in the core of the lineshape at low pressures. The structured

residuals at low pressure fade as pressure was increased beyond 80 Torr. Similar

results were observed in our recent report of the Cs D1 line and attributed to line

narrowing by velocity changing collisions[46]. This effect was first observed by Dicke in

1953 and was numerically characterized by Galatry [18, 19]. Neglecting this structure

has a negligible effect on the Lorentzian widths and broadening rates[46, 49].

The Lorentzian width and shift for each spectrum are plotted against their cor-

responding pressure of buffer gas in Figs. 17 and 18. The widths and shifts depend

linearly on pressure:

∆νL = γP + γN , (26)

δν = δ P, (27)

where γ is the broadening rate for the buffer gas, and γN is the known natural

width for the D2 transition, 5.2 MHz [61]. The y-intercept of eqn. 26 and ?? were

allowed to vary to account for minor variation of the manometer. The resultant

broadening, γ, and shift rates, δ with their corresponding slope fit errors are shown

in Table 9 and 10. The uncertainties were determined from the weighted least square
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Figure 16. A sample of the resultant fits with residuals to equation (25)
for the D2 transition under the influence of N2 at 20, 40 , 60, and 80
Torr.
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fit and reported as one standard deviation in the slope parameter. In addition the

pressure measurement of the capacitance manometer contributed an uncertainty of

about 0.08%. This resulted in the total error of ≈ 0.30%.

Table 9. Measured values for the broadening rate for the D2 transition
compared to the previous results.

Current Work Previous Work

Buffer γ1
a,b γD2

γD1
T2 γ2 γadj

c Ref.

Gas MHz/Torr (K) MHz/Torr MHz/Torr

He 20.59±0.06 0.84 294 23.50±0.21 22.77 [4]
293 24.65±0.26 23.84 [25]
295 26.76±1.69 25.97 [12]
393 17.73±0.75 19.87 [15]

3He 22.35±0.05 0.84 393 23.37±1.132d 26.20 [15]
Ne 9.81±0.06 0.90 293 12.39±0.21 11.98 [25]

295 10.34±1.05 10.04 [12]
Ar 16.47±0.18 0.90 293 19.91±0.54 19.26 [25]

295 22.78±0.74 22.11 [12]
Kr 15.54±0.05 0.87 295 16.83±0.30 16.28 [25]

295 10.94±0.90 10.62 [12]
Xe 18.41±0.07 0.93 295 17.22±0.14 16.66 [25]

295 57.56±6.0 55.87 [12]
H2 27.13±0.2 1.27 295 59.66±7.94 57.91 [12]
HD 28.24±0.17 1.39 — — — —
D2 22.84±0.16 1.26 — — — —
N2 19.18±0.06 1.20 294 22.68±0.20 21.98 [4]

295 38.75±9.57 37.61 [12]
393 23.39±1.51 26.21 [15]

CH4 25.84±0.09 0.86 — — — —
C2H6 26.14±0.08 0.95 — — — —
CF4 17.81±0.05 0.94 — — — —

a Error from a weighted linear fit only. b T1=313K c See Eqn. (28) d Calculated value from
4He.
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(a)

(b)

(c)

Figure 17. Cesium D2 hyperfine profile shift as a function of pressure
of (a) the noble gases, (b) various hydrogen isotopes, and (c) several
molecules.
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(a)

(b)

(c)

Figure 18. Cesium D2 hyperfine profile broadening as a function of pres-
sure of (a) the noble gases, (b) various hydrogen isotopes, and (c) several
molecules.
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Table 10. Measured values for the shift rates for the D2 transition
compared to the previous results.

Current Work Previous Work

Buffer δa,b δD2

δD1
T2 δ Ref.

Gas (MHz/Torr) (K) (MHz/Torr)

He 0.69±0.01 0.16 294 0.75±0.01 [4]
293 0.68±0.03 [25]
295 3.88±1.68 [12]
393 -1.40±.08 [15]

3He 0.60±0.01 0.10 393 -1.85±0.11c [15]
Ne -2.58±0.01 1.61 293 -2.59±0.07 [25]

295 -4.65±0.30 [12]
Ar -6.18±0.02 0.96 293 -6.53±0.16 [25]

295 -7.65±0.75 [12]
Kr -6.09±0.01 1.12 293 -6.44±0.10 [25]

295 -7.79±1.05 [12]
Xe -6.75±0.01 1.05 293 -6.44±0.1 [25]

293 -13.34±0.75 [12]
H2 -4.83±0.04 -4.25 295 1.65±0.30 [12]
HD -4.49±0.03 -9.48 — — —
D2 -4.54±0.03 -5004 — — —
N2 -6.2±0.01 0.80 294 -6.73±0.04 [4]

295 -7.13±0.24 [12]
393 -6.79±0.38 [15]

CH4 -8.86±0.02 0.93 — — —
C2H6 -9.38±0.02 1.07 — — —
CF4 -6.47±0.01 1.06 — — —

a Error from a weighted linear fit only. b T1=313K c Calculated value from 4He.
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Discussion

The present results are compared with previous measurement in Tables 9 and 10.

Prior studies were conducted at temperatures of T2= 293-393 K and the rates must

be scaled to T1 = 313 K for the present results. The temperature dependence of

broadening rates are usually described as [29]:

γ(T2) = γ(T1)

(
T1

T2

)n
. (28)

If the cross-section, σ, is independent of relative speed:

γ(T ) = σ

(
8kbT

πµ

)1/2

, (29)

then n = 1
2

[46]. The relative speed, g =
(

8kbT
πµ

)1/2

, depends on the reduced mass of the

collision pair, µ. The temperature dependence of the cross-section was very weak for

Cs D1 and is assumed independent for the comparisons presented in Tables 9 and 10

[46]. For He, the present broadening results compare most favorably with the most

recent result using broadband illumination and a grating spectrometer and not as

closely with the similar laser absorption spectroscopy work [15, 4]. The discrepancies

between this work and that of Andalkar et al, could lie in the differences in the

experimental procedures [4]. First, the prior work was limited to pressures under 160

Torr and only acquired under 16 data points for the calculation of the broadening

rate. On the other hand, this work acquired data out to 300 Torr and had twice

the number of data points. Secondly, in the calculation of the slope Andalkar et al

adjusted the widths by their laser linewidth and the natural width of the D2 line in

order to fit a line with a y-intercept of zero. In contrast, due to small variations in

the zeroing of the capacitance manometer between buffer gases this work allowed the
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y-intercept to vary allowing the slope to be fit more precisely. Finally, the fitting of

the line by Andalkar et al was a general least squared fit but this work utilized the

error of the Lorentzian width determined from the fitting of eqn. 25 to provide a

relative wieghting of the data and perform weighted least squared fit.

For the remainder of the rare gases, our results tend to favor the recent results

using laser absorption techniques [25]. For Xe, N2, and H2 our results are 2-3 times

smaller than the older work using scanning Fabry-Perot spectrometers [12]. Similar

comparisons are observed for the shifting rates, with the notable exception of He.

Our results agree with the small blue shift observed by Andalkar et al and Inoue et al

and disagree with the larger blue shift of Bernabeu and Alvarez and the anomalous

red shift of Couture et al [4, 25, 12, 15]. In the case of the red shift of Couture

et al, this may be due to the extremely high temperatures of their study and the

energy dependence of the shift cross-sections. We also observe a blue shift of H2 in

disagreement with the Fabry-Perot results [12].

A comparison of the broadening and shifting of the D1 and D2 lines for Na, K, Rb,

and Cs by a variety of collision partners is summarized in Figure 19 [29, 34, 51, 46].

In general, the rates are similar for the two spin-orbit split states. For Cs collisions

with rare gases and large molecules the D2 broadening rate is 5-16% less than the

D1 rate. In contrast, Hindmarsh and Farr observed a slightly higher value for the

D1 lines when reviewing the full alkali database in 1972 [23]. This conclusion is not

supported when reviewing the more recent alkali results.

Hindmarsh and Farr offer several additional observations regarding the shifting

rates. First, the difference in the shift is dependent on the perturber and not on the

nature of the alkali. This trend is supported by the data in Figure 19. For example,

the noble gases show that as the mass of the perturber is increased the shift switches

direction and increases in magnitude. For the small number of molecules shown, no
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observable correlation is shown. Second, where there is a blue shift of the transition,

the 2P 1
2

rate is greater than the 2P 3
2

rate. This is observed in Cs and Rb when mixed

with He and 3He. The collisional partner H2, HD, and D2 switch the direction they

shift from blue to red when comparing 2P 1
2

to 2P 3
2
. Third, the red shifts are typically

small and there is no way to predict which transition will have the greater shift from

any observable trend within the data. This statement is observed in Figure 19 b.

While there are more rates that are greater for 2P 3
2

there are still some that are

greater for 2P 1
2
.

A comparison of the effect of the alkali on the broadening cross-section for the

D2 line is shown Figure 20. Each alkali shows a linear relationship between itself and

that of cesium, but each has a different slope. The cross-sections for Cs and Rb are

similar. However, the cross-sections for K are about 70% larger and for Na is about

30% less. Further study of the potential surfaces is required to explain the observed

trends.

To further compare these rates, the Leonard-Jones interatomic potentials were

calculated using the the approach demonstrated by Hindmarsh and Farr and utilized

by Rotondaro and Perram.[23, 51] This approach assumes a 6-12 difference potential:

V (R) = C12r
−12 − C6r

−6, (30)

where r is the interatomic separation and C6 and C12 are the coefficients for the r−6

and r−12 terms respectively. These coefficients were determined from the broadening

and shift rates using the impact approximation [54]. The impact approximation,

while sufficient within the core of the Lorentzian profile, is inadequate in the far

wings. In addition, these potentials average over all angles of impact and assume a

single point of interaction between the alkali and the molecule. These interatomic

difference potentials are shown in Figure 21.

52



(a)

(b)

Figure 19. The collisional broadening (a) and shift (b) cross-section for
the alkalis Cs ( ), Rb ( ), K ( ), and Na ( ) with various collisional
partners for D2 transition compared to the D1. The rates were measured
for sodium by Kielkopf, for potassium by Lwin and McCartan, for rubid-
ium by Rotondaro and Perram, and cesium by Pitz et al. [29, 34, 51, 46]
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Figure 20. Comparison between the 2P 3
2

broadening cross-sections of Na,
K, and Rb with that of Cs.
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Theoretical calculations of the ground state potential energy surface for alkali-rare

gas collision pairs, X2Σ, and the excited states, A2Π1/2 correlating to the separate

2P1/2 atom and the A2Π3/2, B2Σ states correlating to the 2P3/2, have been performed

at various levels [13, 39]. A comparison of these theoretical results to the interatomic

difference potentials produced by the Hindmarsh and Farr techniques may show some

striking differences. First, the excited state 2P3/2 has been shown, by theoretical

means, to split into two potential surfaces, A2Π3/2 and B2Σ. This is not possible to

produce both a repulsive and bound surface with the Hindmarsh and Farr technique.

Second, the quantitative values for the well depth and equilibrium interatomic sep-

aration distance are not similar between the two sets of potential surfaces. In the

case of cesium-argon potential surfaces the theoretical values for the well depth are

on the order of 60 meV, while the Hindmarsh and Farr surfaces are less than 0.1 meV

[39]. In addition, the equilibrium interatomic separation for the theoretical surfaces

is three times smaller than those obtained for this work [39]. While these surfaces do

not compare directly, if the Hindmarsh and Farr techniques is applied to other alkalis

the interatomic difference potentials that are obtained can be used to form additional

correlations between alkalis.

The equilibrium interatomic separation distance, Re and the well depth, De if they

are bound surfaces, for the Cs D1 and D2 data are shown in Figure 22. Well depth

and equilibrium separation generally increase as the polarizability of the rare gas

increase. Molecular hydrogen exhibits the strongest binding. The larger molecules

behave similar to the heavier rare gases. Nitrogen has a similar spin orbit relaxation

rate compared to the other diatomic molecules studied here, but the quenching rate

is eleven times greater than H2, HD, and D2 [37]. This quenching rate for nitrogen is

of the same order of magnitude for both the D2 and D1 transitions [37]. The values

Re and De for the cesium 2P 3
2

are also compared to the rubidium values calculated
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(a)

(b)

(c)

Figure 21. The interatomic potential surfaces between cesium and (a)
the noble gases, (b) various forms of hydrogen, and (c) an assortment of
molecules.
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(a)

(b)

Figure 22. Comparison between the well depths (a) and the interatomic
separation (b) of cesium D1 and D2 transitions.
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by Rotondaro and Perram, shown in Figure 23 [51]. The values for De and Re are

strongly correlated between the two atoms with nitogen being the largest outlier for

both the well depth plot and the equilibrium separation.

The impact approximation and the Leonard-Jones potential suggests a correlation

between the probability per collision for phase changing collisions and polarizability.

This present result is consistent with this prediction, as illustrated in Figure 24. The

ratio for the gas kinetic cross-section:

σg = π · (rCs + rbuffer gas)
2 , (31)

were evaluated from reference [24]. The polarizability for the buffer gases was found

in reference [5].

Conclusions

The rates for collision induced broadening and shifting in the core of the Lorentzian

profile for the Cs D2 line with a broad range of collision partners at modest pressures

has been determined with uncertainties of ≈0.3%. A number of trends in the broader

alkali database have been evaluated, but require further theoretical support for fur-

ther interpretation. Sub-atmospheric pressures are sufficient to broaden the pump

transition for the Cs Diode Pumped Alkali Laser if diode bars and stacks can be nar-

rowed to ≈30 GHz, as recent reports suggest [65]. The current addition of lineshape

data for 3He, methane, and ethane allow detailed modeling of the bleached wave in

recent laser demonstrations [8].
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(a)

(b)

Figure 23. Comparison between the well depths (a) and the interatomic
separation (b) of cesium and rubidium.
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Figure 24. Correlation of the probability for phase changing collisions in
the D2 transition with dipole polarizability of the collision partner.
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V. Spin-Orbit Energy Transfer

Introduction

Collision induced mixing between the 2PJ states of alkali’s have been studied

thoroughly since the 1960s.[31, 20, 16, 36, 37, 17, 67, 68, 52] These mixing rates

have again become of keen interest because of their role in Diode Pumped Alkali

Lasers (DPAL). The DPAL system was first demonstrated by Krupke and Beach.[32,

8] This alkali laser can be consider an adaptation of the laser system proposed in

1958 by Schawlow and Townes.[55] The DPAL system is a three level laser system

that is pumped by diode bars or stacks along the D2 transition to its 2P 3
2

state

then collisionally relaxed to the 2P 1
2

state where it lases down the D1 transition.

Recent demonstrations have employed ethane and methane as the collisional partner

for spin-orbit relaxation. While ethane has an excellent rate for energy transfer,

it also degrades laser performance with the production of laser snow and soot.[41,

69] Hydrocarbon free lasers have recently been demonstrated for both potassium

and rubidium using rare gas collision partners.[74] For cesium, the larger spin-orbit

splitting requires molecular collision partners.[69]

The most recent study of the mixing rate between the cesium 62P1/2 ↔ 62P3/2

states was performed in 1974 by Walentynowicz.[67, 68] In this investigation a ce-

sium discharge lamp was used to excite the desired states in cesium and a pair of

photomultiplier tubes to monitor the flourescence of the two mixing states. In ad-

dition, Walentynowicz assumed quenching was negligible and observed the resulting

intensities at several different pressures of no more than 1.5 Torr.

In this present work, the spin-orbit mixing rate between the 62P 3
2

and the 62P 1
2

levels of cesium caused by collision with N2, H2, HD, D2, CH4, CF4, C2H6, and C2F6

over a range of 0-100 Torr are observed. The role of the energy defect between cesium
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and the ro-vibrational model of the collision partner is examined and compared with

the prior results for rubidium.[53] In addition, the energy defect between cesium and

the lowest lying vibrational states of the collisional partners is also compared.

Experiment

The apparatus used to measure the spin orbit energy transfer between the 62P 3
2

and the 62P 1
2

states is shown in Figure 25. A Coherent MBR-110 Ti:Sapphire ring

laser was tuned to either 852 or 894 nm to prepare the 62P 3
2

or the 62P 1
2

states,

respectively. The ring laser, which was pumped by a Coherent Verdi V-18 diode

laser, has a linewidth less than 100 kHz with powers less than 3.5 W. The hyperfine

splitting of the ground 2S 1
2

state is 9.1926317 GHz and the laser was tuned to excite

the (F ′′ = 4) component, at frequencies of ν1 = 335111 GHz and ν2 = 351722 GHz.

These frequencies were actively monitored with a Bristol 621 laser wavelength meter

to minimize laser drifting.

This beam was greatly attenuated (< 4µW ), expanded to a diameter of 9.7mm,

and amplitude modulated before reaching the test cell. The resulting pump intensities

were less than 5 µW
cm2 , significantly less than the saturation intensity. At low pressure

the saturation intensity of theD1 transition is approximately 2.5 mW
cm2 . Phase sensitives

with amplitude modulation at 100 Hz detection was employed to improve the signal

to noise ratio.

The cell was described in detail previously and could sufficiently maintain and vary

the cell temperature and pressure.[46] The single end of a bifurcated fiber bundle

was placed perpendicular to the beam to observe the side flourescence of the cell

and was coupled into a pair of Hamamatsu photomultiplier tubes (R5509). Two

ThorLabs band pass filters centered on the D1 (λ = 890nm with a full width half

max (FWHM) of 10 nm ) and D2 (λ = 850nm with a FWHM of 10 nm) transitions to
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Verdi V-18 
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MBR Ring Laser 
λ = 852,894  nm 
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Lock-Ins 

SRS 850 
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Cs Vapor 
 Cell 

3x Beam 
Expander 

Figure 25. Experimental apparatus to observe side fluorescence of ce-
sium.

limit the detection of light to the two desired states. This allows for the monitoring of

the laser prepared state and the collisionally populated satellite state simultaneously

while continuously varying the pressure of buffer gas. Cell pressure was monitored

by MKS model 690A capacitance manometer with a range of 0-100 Torr. The cesium

was 99.98% pure and all gases had a purity greater than 99.9% purity, with the one

exception of HD which had a purity of 97.3%. The cell was maintained at room

temperature, which resulted in a cesium vapor pressure of 1.51× 10−6 Torr, to avoid

optical trapping.

A small amount of scattered laser light which was coupled into the PMTs. The

level of the scattered light was measured by tuning slightly off resonance from the

pump line while the cell contained no buffer gas. The scattered laser light was recorded

to be less than 2% of the emission of the prepared state and was subtracted from the

total observed signal. Additionally, the band pass filter did not completely isolate

the emission of the satellite state from the parent. The fraction of light passed by

the satellite filter at the pump wavelength was measured at zero buffer gas pressure,

where no collisional transfer exists, at less than 1%.

The relative spectral response of the D1 and D2 detectors is required to relate the
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observed intensities to the corresponding concentrations of the emitting states:

ID1 =
[
Cs
(

2P1/2

)]
d1 = N1d1, (32)

ID2 =
[
Cs
(

2P3/2

)]
d2 = N2d2, (33)

The relative spectral response was initially determined by a blackbody calibration

at T = 900 C as d = d1

d2
= 0.431 ± 0.07. The improved value for spectral response,

d = 0.979 ± 0.186, was achieved by assessing the resulting rates with respect to the

principle of detailed balance, to be discussed below.

Results

The observed intensities from the D1 and D2 transitions converted to concentra-

tions N1 and N2, as the ethane or methane gas pressure is continuously increased as

shown in Figure 26. The ethane data in Figure 26a were obtained during a period

of less than 20 minutes while the pressure increased at an average rate of 80 mT/s,

yielding greater than 25,000 samples. The methane data is more highly sampled at

124,000 samples over the 100 Torr range.

The signal for the satellite state initially increases linearly due to direct energy

transfer. At higher pressures, collisional transfer back to the parent state begins to

limit the satellite concentration and the ratio approaches a nearly statistical distri-

bution.

In order to determine the rate of energy transfer from the observed intensity ratio,

the following kinetic analysis is developed. First, laser excitation is used to populated

either the 2P 1
2

or the 2P 3
2

via:

Cs[2S 1
2
] + hν1 → Cs[2P 1

2
] (34)
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or

Cs[2S 1
2
] + hν2 → Cs[2P 3

2
], (35)

where the rates, S1 and S2, depend on the absorption cross-section and the laser

intensity. Second, the energy of the excited states is then transferred by collisions

with the buffer gas, M:

Cs[2P 1
2
] +M 
 Cs[2P 3

2
] +M, (36)

with rate coefficents k12 and k21 to be determined in this work. Third, population

of the excited state may return to the ground state via quenching or spontaneous

emission:

Cs[2P 1
2
] +M → Cs[2S 1

2
] +M (37)

Cs[2P 3
2
] +M → Cs[2S 1

2
] +M (38)

Cs[2P 1
2
]→ Cs[2S 1

2
] + hν1 (39)

Cs[2P 3
2
]→ Cs[2S 1

2
] + hν2 (40)

The quenching rates, kQ1 and kQ2, depend slightly on the excited state. The radiative

rates are A1 = 28.66 MHz and A2 = 32.82 MHz.[61]

A steady-state analysis of the rate equations establishes the ratio of concentrations

as: [
N1

N2

]
Pump D2

=

(
ID1

ID2

)(
d1

d2

)
=

k12[M ]

A1 + (kQ1 + k21)[M ]
(41)

[
N2

N1

]
Pump D1

=

(
ID2

ID1

)(
d2

d1

)
=

k21[M ]

A2 + (kQ2 + k12)[M ]
. (42)

when pumping the D2 and D1 transitions, respectively.

Least squares fits of eqns. 41 and 42 to the observed population ratios are shown in
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Figure 26. Population ratios while preparing both the 2P3/2 and 2P1/2

state with varying pressure of (a) ethane and (b) methane. An expanded
view of the methane data at low pressures is compared with the prior
work at 440K(c).[67]
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Figure 26. The resulting fit parameters are reported as the spin-orbit and quenching

cross-sections in Table 11. The average relative speed:

g =
8kbT

πµ
(43)

where µ is the reduced mass of the collision pair is used to relate the rate to the cross-

sections, k = σg, at the cell temperature of T = 298K. The error bounds reported in

Table 11 reflect only the statistical errors as determined by one standard deviation

in the corresponding fit parameter.

The ratio of the forward and the reverse spin-orbit rates must obey the principle

of detailed balance:

σ21

σ12

=
g2

g1

e
−∆Eso
kbT (44)

where the degeneracies are g2 = 4 and g1 = 2 and the spin-orbit splitting is ∆Eso =

554cm−1. Constraining the average value for this ratio for all collision partners to

σ21

σ12
= 0.132 at T=298K. provides an improved measure of the relative detectivity,

d1

d2
= 0.979 ± 0.186. The observed ratios σ21

σ12
range between 0.12-0.16, suggesting a

systematic error of about 15%. Note that the prior determination of the spin-orbit

relaxation rates exhibit significantly greater violations of detail balance.

The curvature observed in Figure 26 at higher pressures reflect the combined

contributions of the reverse spin-orbit rate and quenching rate, as expressed in the

denominator of eqns. 41 and 42. Any difference between the high pressure asymptotic

limit and the ratio of eqns. 41 and 42 implies a significant quenching rate. These

expected asymptotic values for the population ratios in this quantity are illustrated

in Fig 26, and little quenching is observed for methane and ethane.
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Table 11. Cross-sections for the energy transfer from the 2P3/2 to the 2P1/2 levels of cesium
induced by collisions at 298 K.

Collisional Cross-section Cross-section Ratio Temp. Ref.
Partner σ12(Å2) σ21(Å2) σ21/σ12 (K)

N2 19.86±0.03 2.34±0.01 12.60±0.82% 298 This Work
16.2±2 3.6±.5 22±4% 313 [36]

25.0±2.5 4.7±.5 19±2.7% 315 [37]
H2 31.10±0.04 4.43±0.01 13.87±0.91 % 298 This Work

29.6±4.4 6.5±1 22±5% 313 [36]
44±4.4 6.7±.5 15.2±1.9% 315 [37]

25.8±2.58 3.6±.4 14.0±2.1% 300 [68]
HD 30.01±0.05 4.09±0.01 14.52±0.95 % 298 This Work

32±3.2 4.8±.5 15.0±2.2% 315 [37]
22.5±2.25 3.9±.4 17.3±2.5% 300 [68]

D2 22.69±0.02 3.02±0.01 14.2±0.93 % 298 This Work
28±2.8 4.2±.4 15.0±2.1% 315 [37]

16.4±1.6 2.3±.2 14.0±1.6% 300 [68]
CH4 21.36±0.01 2.95±0.01 14.74±0.96 % 298 This Work

16.8±1.7 2.3±.2 13.7±1.83% 298 [67]
CF4 60.34±0.06 9.93±0.01 15.97±1.04% 298 This Work

52.0±5.2 7.9±.8 15.2±2.2% 310 [67]
C2H6 64.83±0.08 7.78±0.01 12.80±0.84% 298 This Work

57.5±5.8 7.9±.8 13.7±2.0% 298 [68]
C2F6 130.66±0.08 16.47±0.01 12.6±0.84% 298 This Work
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Discussion

The energy exchange rates are usually at their maximum when they have a reso-

nant path for that exchange. Gallagher implied the possibility of electronic to trans-

lational energy exchange with cesium-rare gas collisions. It is important to note that

a similar temperature dependence of the cesium-rare gas energy transfer is not ob-

served in the complex molecule of Walentynowicz.[67, 68] This may imply that the

complex molecules transfer the energy by other means.

Rotondaro suggested the possibility for accessing the rotational states of the buffer

gas for the exchange of energy.[52] Rotondaro used rubidium which has an energy

defect of 237.6 cm−1. On the other hand, Cesium has a energy defect of 554 cm−1

which may be able to access some of the lower vibrational states of the more complex

molecules. Rotondaro used the general reaction model:

A[2P 3
2
] +M(J ′′) 
 A[2P 1

2
] +M(J ′), (45)

where A[2Px
2
] is the concentration of the alkali and M(J) is the concentration of the

buffer gas at rotational level J. He demonstrated a correlation was shown between Rb

and the total energy defect of the rotating buffer gas[52]. Figure 27 a was recreated

from his results with the addition of cesium. The correlation expressed by Rotondaro

utilized the model:

kE−R =
∑
J

e−|∆E|/kbT
hcBν

kbT
(2J + 1)e−hcBνJ(J+1)/kbT , (46)

where kE−R is the electronic to rotational energy exchange rate, ∆E is the differece

on the alkali energy defect from the rotational energy defect, Bν is the rotational

constant, and J is the rotational states.

As one can see, the rubidium correlation seems to fit nicely and the cesium
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Figure 27. Demonstrations of the possible energy exchange between elec-
tronic to rotational (a) and electronic to vibrational (b) with inclusion
of data from Rotondaro. [52]
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cross-sections seem to follow a similar trend with the exception of ethane, carbon

tetraflouride and hexafluoro-ethane. While these molecules have the smaller theoret-

ical electronic energy exchange rate, they have the largest cross-sections.

Walentynowicz pointed out that carbon tetraflouride has a set of vibrational states

(437 and 635 cm−1) that are close to the energy defect cesium.[67] This leads one to

believe that the energy is not being transfered to the rotational states like the others

but instead into a vibrational state. Ethane has vibrational states (289 and 822 cm−1)

that have the same magnitude as the energy defect of Cesium and hexafluoro-ethane

has a vibrational states at 520 cm−1 and 619 cm−1. The relationship for electronic-

vibrational energy transfer is shown in Figure 27 (b). It is important to note that the

electronic-rotational transfer is possible, but it may not be as effective as electronic

to vibrational energy transfer. For example, the the hydrides appear to achieved a

maximum for the correlation to electronic-rotational transfer at 30 Å2, but on the

other hand for the correlation to electronic to vibrational energy transfer CF4 and

C2F6 achieve a maximum ranging from 60-130 Å2. This leads one to believe that it is

easier to access vibrational states over the rotational states of the collisional partner.

Conclusion

This study measured the rate of the spin-orbit energy exchange between cesium

and various molecular collisional partners, improving the error for these measured

cross-sections from 10% to 7% with the greatest variance produced in the measure-

ments of ethane, 7.8 Å2. Based on the measured spin-orbit energy exchange cross-

sections, it is this works recommendation for the DPAL community to attempt work

with hexafluoro-ethane. Furthermore, the comparison between the energy defect of

the alkali to the rotational and vibrational states of the collisional partner may reveal

a carbon free partner.
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VI. Producing infrared and blue beams with Alkalis

Introduction

The diode pumped alkali laser (DPAL) has been of great interest due to its po-

tential for scaling for high power applications. This system will utilize diode bars or

stacks to pump an alkali along its D2 transition and lase along the D1 transition. This

concept was proposed by Krupke in 2003.[32] The DPAL system was initially demon-

strated using rubidium, which resulted in a slope efficiency greater than 53%,[70] and

cesium with a slope efficiency of 52%.[71] This laser system requires that the atomic

transition be pressure broadened to match the broad diode pump, requiring broad-

ening gas pressures of 1-20 atmospheres. In addition, a collisional partner must be

introduced to relax the population from the pumped 2P3/2 state to the 2P1/2 state.

This has been typically accomplished using ethane at pressures of several hundred

Torr. An alkali is an attractive laser medium because of its large absorption cross-

sections and its ability to rapidly cycle under high pump intensities.[40]

Other alkali lasers have been proposed in recent history that have produced both

an infrared laser source as well as a blue one. One such approach utilized sequential

pumping of cesium from its ground state, 62S1/2, to the 2P3/2 state and then was

pumped again by a second laser to the 62D5/2 state. The final excited state cascaded

along the infrared transition to the 72P3/2 where it lased and produced a blue beam

of 4 µW at 455nm.[9, 56] Lasing without inversion (LWI) has been demonstrated in

rubidium via sequential double resonance processes.[72, 38, 73, 1] This produced a 40

µW blue beam by using two 20mW lasers to pump at 780 and 776 nm to coherently

couple the 5S state with the 5P and 5D states. An amplified spontaneous emission in

the infrared was observed when an alkali was pumped to its second excited P state in

the blue.[58] This was proposed for rubidium and cesium and produced 16 different
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Figure 28. Energy Level Diagram for K (→), Rb(→), and Cs(→), where
n=4,5, and 6 respectively. Additionally, the typial red DPAL system is
shown (→)
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IR lines. In addition, by utilizing two photons in the near IR and the IR photon,

produced by optically pumped stimulated emission, a 7P-6S blue beam was observed

in cesium. This was believed to be the result of four wave mixing.[22] This process

arises from the third order optical nonlinearity, χ(3), and is heavily dependent on

phase matching between all optical waves involved.

Figure 29. Experimental Apparatus for K blue beam

This group has recently produced a collimated blue beam and an IR beam utiliz-

ing a single intense pump source of rubidium and cesium.[64] The present work has

produced similar results with potassium. These experiments used two photon absorp-

tion excitation of the 72D3/2,5/2 and the 92S1/2 states of cesium and the n2D3/2,5/2 and

the (n+ 2)2S1/2 states of rubidium (n=6) and potassium (n=5). These processes are

shown in Fig. 28. In contrast to a DPAL system, this two photon process operates at

low pressure without collisional energy transfer, offering minimal heat loading. Also,

in comparison to other blue systems, this requires a single near infrared pump source.
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Experimental Apparatus

A diagram of the experimental apparatus is provided in Fig. 29 and is similar to

previous work by Sulham et. al..[64] The pump source for the alkali was a Nd:YAG

pumped Sirah dye laser with LDS-722 and LDS-765 dye. These dyes provided access

to wavelengths from 685-760nm and 745-785nm, respectively. The output energy was

up to 100 mJ in 8 ns pulses at 10 Hz and a spectral bandwidth of 16 GHz. The

output of the dye laser was a beam with a radius of 3.5 mm and a divergence of less

than 0.5 mrad.

Figure 30. Dispersed beams for the Cs cell in the forward direction. The
mid-IR Spot was not imaged, but is schematically located by spatially
scanning with a point InSb detector with short pass filter.

The cesium and rubidium cells were produced by Triad technologies with a 2.5 cm

diameter and 7.5 cm length and were heated to 448 - 524 K. When heated over 374
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K, the potassium cell reacted with a contaminant that out gassed from the cell walls.

Therefore, a heat pipe was utilized to keep the potassium off the windows. The heat

pipe was operated at 528 and 556 K and initially was filled with 4 Torr of He. The

heat pipe was attached to a gas handling system which was employed to vary the

buffer gas.

After the beam passed through the cell/heat pipe, it was then sent into a BK7

prism to disperse the different wavelengths of light. Additionally, a short pass filter

with a cut off at 460 nm was used to remove any scatter from the Nd:YAG and dye

laser. A Hamamatsu S2281-04 large area silicon detector was employed with boxcar

detection to record laser excitation spectra. The side fluorescence was recorded using

a 0.25m Triax spectrometer and to verify the blue transition of the alkali. Average

power was measured with a Coherent LM-3 HTD or a Newport 818-SL power meter

for cesium and rubidium. The output of the potassium was too low to be accurately

measured with available power meters and was instead qualitatively recorded with a

new focus nanosecond silicon detector.

Results

A blue spot has been observed when pumping cesium, rubidium, and potassium

on the two photon transition from the ground 2S1/2 state to the highly excited 2S1/2

and 2D3/2,5/2 states. The beam that was produced, when pumping cesium, had a

measured beam divergence of θ1/2 = 6 mrad. This beam divergence is larger than the

pump beam, < 0.5 mrad, but is much smaller than the fluorescence solid angle of 47

mrad. Additionally, a mid-infrared beam was also observed for cesium by spatially

scanning an InSb detector with a 2.5 µm short pass filter. No IR beams were recorded

for rubidium or potassium due to the transmissive properties of the cell windows. The

resultant blue spot, pump beam, and relative mid-IR location are shown in Fig. 30.
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Figure 31. Excitation spectrum from potassium for a heat pipe at 553
K with 5.4 Torr of He.

Two-photon absorption.

A validation of the two-photon absorption process was the measurement of the

excitation spectrum of the blue emission which was initially shown by Sulham.[64]

An excitation spectrum for potassium is shown in Fig. 31 by monitoring the blue

beam as the wavelength of the dye laser was scanned. The blue spot in potassium

occur as expected at 728.6 nm and 729.9 nm. The fine splitting of the 2D state was

not observed due to the low signal of the blue intensity. (This effect may be due

to helium buffer gas that is essential for heat pipe operation.) Similar experiments

with a rubidium heat pipe demonstrated that while pumping the 2D state as helium

pressure was increased, the blue intensity diminished quickly. This may be due to the

spin orbit mixing of the 2D state, but further investigation is required. On the other

77



hand, while pumping the 2S state, the blue emission for the heat pipe was observed

up to 240 Torr of He.

Figure 32. Blue intensity as pump power was varied for 528K (•) and
556K (•) while pumping along the 42S1/2 → 62S1/2 two photon transition.

The blue emission from potassium as a function of the pump power is show in

Fig. 32. The threshold for the blue beam for the 42S1/2−62S1/2 transition is approxi-

mately 260 kW/cm2 (≈ 1mJ/pulse)and appears to decrease as the number density of

potassium is increased. This trend, which is counter intuitive to a standard DPAL, is

also shown by Sulham for cesium.[64] The relative slope efficiency for the potassium

blue beam increases by approximately a factor of 4 as the number density is increased

by a factor of 2.5.
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Table 12. Possible ASE IR Transitions from ex-
cited alkali states.

Alkali Transition Wavelength (µm)

Potassium 42D → 52P 3.7
62S → 52P 3.6
52D → 52P 1.8
52S → 52P 1.8

Rubdium 52D → 62P 5.04,5.23
72S → 62P 3.85,3.97
62D → 62P 2.01,2.04
82S → 62P 1.876,1.90

Cesium 62D → 72P 12.14,14.59
82S → 72P 3.92,4.22
72D → 72P † 2.33,2.43
92S → 72P 1.94,2.01

† Observed by Sulham.[64]

Mid-IR Beam.

All experiments were performed with little to no buffer gas and therefore the

transfer of the population from the pumped state to the upper blue 2P1/2,3/2 state

must occur optically. The optical transition between the pumped state and P state

produces an IR beam that was observed when pumping cesium to the 72D3/2, 72D5/2,

and 92S1/2 states. Using an InSb point detector and a 2.5 µm short pass filter,

the 2.34 µm and 2.43 µm spots from the 72D3/2 → 62P1/2 and 72D5/2 → 62P3/2

transitions were observed. The IR spot was mapped out by scanning the InSb point

detector spatially. It is assumed that the other alkalis produce similar IR ASE but

were not observed due to the transmission properties of the cell in the far IR. The

IR wavelengths of the other alkalis are shown in Table 1. More IR transitions are

accessible by pumping higher 2D and 2S states. The IR transitions from the blue 2P

to the first exited 2D and 2S states were observed by Sharma.[58] Also, Hamadani

observed the IR beam transition which was used to explain the four-wave mixing.[22]
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Emission from Highly Excited States.

Significant side fluorescence from many highly excited states are observed both by

two-photon pumping and by pumping along the D2 transition. An example of these

emissions are shown in Fig. 33. The D2 transition in rubidium was pumped and the

side fluorescence was monitored using a 0.25m Triax spectrometer. The temperature

of the cell was maintained at 503K with no buffer gas present. While pumping with

28 mJ in an 8 ns pulse, more than 20 highly excited states were observed.

These highly excited states imply that energy pooling may be a negative effect

on red DPAL systems as they are scaled. However, there are no observed Rb ion

transitions which would have a catastrophic effect on the DPAL system.

Figure 33. A side fluorescence spectrum from rubidium while pumping
along the D2 transition.
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Discussion.

A collimated blue beam of the wavelength that corresponds to the (n + 1)2P →

(n)2S transition has been observed for K, Rb, and Cs by pumping at a single wave-

length via two-photon absorption. There are two possible mechanisms for the blue

beam. One, as suggested by Sulham[64], is amplified stimulated emission. The other

is 4 wave mixing as suggested by Hamadani.[22] It has been suggested by Malcuit,[35]

that by counterpropagating the pump waves four wave mixing can be suppressed. In

both the case of this study and that of Sulham et. al[64] a mirror that reflected the

red pump beam back into the cell and passed the blue was used. Both mechanisms

are plausible and may be in competition with one another. Further study is required

to understand the decreasing threshold with increasing number density, the non linear

nature of the blue beam intensity compared to the linear IR beam intensities, and

the differences in the pressure effects on the blue beam when pumping the 2D versus

the 2S states.

The addition of even small amounts of buffer gas has a negative effect on the D

state. This is believed to be due to spin orbit mixing between the 2D5/2 and 2D3/2

states, but further work is needed. While pumping the 2S state, the blue emission was

observed to pressures over 200 Torr of He within a heat pipe at 280C. The (n+ 1)2P

state was populated by lasing from the pumped state. This offers no quantum defect

and the potential for low heat loads. In addition to providing a source for blue light,

this system gives access to multiple IR laser lines. Each alkali provides numerous

transitions that can provide IR light by pumping higher and higher states. Over 20

highly excited states have been observed when pumping with high pump intensities

and high number densities. It is likely that as DPAL is scaled with pump intensity,

energy pooling will play a more significant role in laser performance.
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VII. Conclusions

Prior to this work, the broadening and shift rates for cesium were in disagreement,

as shown by the discrepancies between measured broadening values for nitrogen as

compared to its average, 28%, and for helium, 14%.[4, 15, 12] The differences in the

shift rate were also quite significant. In the case of the shift rate of the D2 transition

caused by collisions with helium it was previously measured to be blue shifted by one

source and red shifted by others.[4, 15] The accuracy of these rates are essential for

application in models of DPAL systems, especially as they are driven up to higher

pressure conditions to match diode pump width and achieve the desired spin-orbit

relaxation rates.

These rates for energy exchange between the 2P3/2 and 2P1/2 states have not

been updated since 1974.[67, 68] The measurements of these rates, when induced by

collisions with complex molecules, did not account for quenching, and only evaluated

conditions under 1.5 Torr, conditions that are not being utilized by current DPAL

systems. Also, the prior work was measured with a potential error of 10% leaving

room for improvement.

Furthermore, while attempting to demonstrate a DPAL system here at AFIT, a

blue beam was produced while pumping along the two photon transition, (n)2S1/2 →

(n, n+ 1)2D3/2,5/2, (n+ 2, n+ 3)2S1/2 of rubidium and cesium. In addition, while pro-

ducing this blue beam, an infrared beam of amplified spontaneous emissions occurred

simultaneously.[64] This demonstration did not utilize the lighter alkali, potassium,

which would extend the light further into ultra-violet spectrum.
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Broadening and Shifts

This work has provided an expanded and updated list of broadening and shift rates

needed by the community for the development of complex alkali laser models to pre-

dict the scalability of the DPAL system. The cross-sections derived from these rates

are summarized in Tables 13 and 14. The broadening and shift rates were measured

with an error less than one percent. Due to the high quality of spectrums acquired,

as shown in Appendix B, the effect of velocity changing collisions was observed in

the line shape. In addition to these values, the interatomic difference potentials were

calculated. This provides the theoretical community with a window into the un-

derstanding of the interatomic forces at play when neutral molecules interact with

cesium. In addition, a comparison between the D1 and D2 cross-section were made in

Fig. 19. This provided an update on the observations made by Hindmarsh and Farr

and expanded it to include values for the most recently measure rates for sodium,

potassium, and rubidium.[23, 45] For the broadening rates of the alkalis, Hindmarsh

and Farr observed that the D1 broadening tended to be slightly greater than that of

the D2 transition. This is in disagreement with the results shown below in Tables

13 and 14. On the other hand, Hindmarsh and Farr made several observations con-

cerning the shift rates of the alkalis. First, the difference in the shift is dependent

on the perturber and not on the nature of the alkali. Second, where there is a blue

shift of the transition, the 2P 1
2

rate is greater than the 2P 3
2
. Third, the red shifts are

typically small and there is no way to predict which transition will have the greater

shift. These three observations were validated by this work.

Spin-Orbit Relaxation

This work has provided an updated list for the spin-orbit energy exchange rates

needed by the community for the accurate modeling of the DPAL system. The cross-
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Table 13. Measured cross-sections (Å2) for the D1

transition obtained from the pressure broadening,
shift, and spin-orbit experiments.

Collision Pressure Pressure Spin-Orbit

Partner Broadening Shift† σ21

He 60.84 10.69 —–
3He 57.11 13.20 —–
Ne 57.18 -8.43 —–
Ar 127.77 -45.15 —–
Kr 160.85 -49.29 —–
Xe 202.00 -65.80 —–
H2 37.80 2.02 4.43
HD 43.76 1.02 4.09
D2 45.27 0.002 3.02
N2 96.58 -46.95 2.34
CH4 142.50 -45.60 2.95
C2H6 171.20 -54.76 9.93
CF4 173.98 -55.96 7.78

† Sign used to indicate direction.

sections derived from these rates are also summarized in Tables 13 and 14. The spin-

orbit rates were measured utilizing buffer gas pressure up to 100 Torr and quenching

was included in the model that was employed to extract these rates (which was not

included before).[67, 68] The error on these cross-sections were decreased by 3%. In

addition, the cross-sections were then correlated to a simple model for energy exchange

between the excited state of cesium and the rotational states of the collisional partner,

shown in Fig. 27. This revealed a slight correlation between the simpler/less massive

molecules and the cross-section for spin-orbit coupling. Furthermore, the outliers of

this correlation revealed the possibility of electronic to vibrational energy transfer.

Ethane and carbon tetraflouride have nearly resonant vibrational states with the

energy defect of cesium. For example, CF4 has the strong similarity between its

vibrational energy and the Cs energy defect with two vibrational states at 437 and
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Table 14. Measured cross-sections (Å2) for the D2

transition obtained from the pressure broadening,
shift, and spin-orbit experiments.

Collision Pressure Pressure Spin-Orbit

Partner Broadening Shift† σ12

He 51.12 1.71 —–
3He 48.33 1.30 —–
Ne 51.71 -13.6 —–
Ar 114.96 -43.14 —–
Kr 140.31 -54.99 —–
Xe 188.43 -69.09 —–
H2 48.15 -8.57 31.10
HD 51.14 -9.72 30.01
D2 56.88 -11.31 22.69
N2 116.19 -37.56 19.86
CH4 123.13 -42.22 21.36
C2H6 163.02 -58.50 64.83
CF4 163.21 -59.29 60.34

† Sign used to indicate direction.

635 cm−1. Ethane, on the other hand, has a vibrational states at 289 and 822 cm−1).

This would imply that C2F6, if it does not react with Cs, would be an excellent

collisional partner for spin-orbit energy exchange because of it’s vibrational state at

619 and 520 cm−1, only a total energy defect of 65 and 34 cm−1.

Potassium Blue and IR Beams

This work has demonstrated the production of a blue beam by pumping potassium

with two red photons. A dim beam was produced by pumping along the 42S1/2 →

62S1/2 transition. A beam was produced by the 42S1/2 → 42D3/2,5/2, but was not

observable to the naked eye. In addition, the helium pressure was increased to 240

Torr, while pumping the 42S1/2 → 62S1/2 transition, before the blue beam was lost.

On the other hand, while pumping to the D state in rubidium the blue beam was
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lost at only a few Torr. This is believed to be due to the spin orbit mixing of the

D state. The blue beam has two potential sources; (1) four-wave mixing and (2)

amplified spontaneous emission. Malcuit suggested that by back-reflecting the beam,

the four wave mixing process can be disrupted.[35] This was a part of this work

experimentation and thus the belief that a blue amplified spontaneous emission was

observed.

Future Work

As the diode pumped alkali laser system is developed, more opportunities for re-

search will arise, one on which is concerning the current problem with carbon based

spin-orbit coupling gases producing soot and laser snow. Due to this problem, the

DPAL community is looking to potassium with helium as a potential scaleable source.

Potassium is the least studied in terms of broadening rates and only a miniscule

amount of study has been accomplished in terms of spin-orbit mixing rates.[34] If

potassium is the direction the community must head in, then this work must be ac-

complished. In addition, the potassium laser wavelength is near the O2(b) rotational

lines and thus it must be determined if there is significant atmospheric absorption

by oxygen at this laser wavelength. Furthermore, the trade-offs of moving between

alkalis must be investigated. A series of experiments and models must be produced to

weigh all the positive and negatives of the alkali frequencies in terms of atmospheric

conditions.

Outside of the DPAL community the blue beam can be further developed with

the intent of creating a full blue laser. In addition, the IR side of the alkalis can

be further developed. If all the possible wavelengths of all the alkalis were studied

as suggested by this work, this would effectively turn the alkalis into the swiss army

knife of the laser community. Then potassium, rubidium, and cesium would be able to
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provide a medium that could provide 20 different IR sources, 4 different NIR sources,

and 4 blue sources all by pumping in the red. This does not include sodium and its

possibility of producing an ultra violet source. Once a sodium is proven to be a laser

medium, it could go from firing projectiles across battlefields to producing coherent

light.
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Appendix A. Frequency Calibration

Time to Frequency Calibration

The conversion of the time of scan to the frequency is essential to the measure-

ment of the characteristic effects of the line profile of cesium. This conversion was

accomplished after the experiment using the known transitions in frequency of the

hyperfine profile of cesium as well as an etalon cavity with a calibrated free spectral

range. The reference cell provided a low pressure hyperfine spectrum that provided

the spectral spacing for the time to frequency conversion as well as a means for cal-

ibration of the free spectral range of the etalon for each buffer gas and pressure. A

typical scan is shown in 34.
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Figure 34. An example of a typical scan recording during the experi-
mental process.
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The spectral spacing of the hyperfine structure of Cesium is extremely well known

due to its use in atomic clocks. The relative spacing for the D1 and D2 lines are

shown Table 15. The spacing for the D1 hyperfine spectrum is large enough to be

completely resolvable at room temperature, but on the other hand the spacing up

the 2P3/2 is less than 300 MHz which is less than the Doppler widths observed during

experimentation.

Table 15. The cesium hyperfine line shifts from line
center for the D1 and D2 transitions.

Transition F
′′ → F

′
Frequency Shift

(GHz)

D1
2S1/2 ← 2P1/2 4 → 4 -3.5109164

3 → 4 -4.6785964
4 → 3 5.68171537
3 → 3 4.51403537

D2
2S1/2 ← 2P3/2 5 → 4 -3.7578858

4 → 4 -4.0089779
3 → 4 -4.2102649
4 → 3 5.18365388
3 → 3 4.98236687
2 → 3 4.83114257

Converting the Time Scan into a Frequency Scan

The nature of the spacing of the D lines provides a frequency reference in time

space. It is first essential to make the assumption that the scan rate over the range

of the hyperfine structure is constant. Applying this assumption in time space, the

temporal free spectral range or the average time between etalon peaks is constant.

The temporal free spectral range (FSR) is then employed to determine the number

of temporal-FSR’s between the hyperfine lines. This value is then used with the

frequency spacing of the hyperfine transition, this is the frequency free spectral range.
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This method is applied across the major spacing of the hyperfine structure and the

average frequency-FSR is calculated.

Once the frequency-FSR is determined, the location of the etalon peaks in time is

plotted against thier place in frequency space. Additionally the four reference lines

of the D1 line are plotted, this is shown in Fig. 35. A quadratic is then fit to this line

with more weight being applied to the reference line data. The resulting coefficients

of the fit function produces the means to convert time to frequency for the D lines.
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Figure 35. A typical plot of the location of the reference spectrum (•)
and etalon peak (+) in frequency as a function of time.

Dissimilarities between Time to Frequency Conversion of the D1 & D2

Lines

One problem that arises when converting the D2 line to frequency space that does

not arise in the conversion D1 is the locations of the reference peaks. For the D1 line
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at low pressures all the hyperfine lines are resolved, but for the D2 line they are not.

The hyperfine spacing for the D2 transition, as shown in Table 15, are not resolveable

with simple absorption spectroscopy. Therefore, an additional step was needed.

For the D2 line, instead of measuring a temporal FSR, a guess at the frequency

FSR was made. The first guess was the average FSR from the D1 broadening ex-

periments. This resulted in the first stab at the conversion of the time to Frequency

conversion. For simplicity sake, this frequency space will be called the transitional

space and symbolized, νT . With the transitional space established the reference spec-

trum with it’s known hyperfine transitions can be utilized. So, the reference spectrum

was fit to the following equation:

A = −ln
(
I

I0

)
=c0 + c1ν + c2

6∑
i=1

aiV ((νT − νi)ξ,∆νL; γD), (47)

where

νi = line center frequency at zero pressure for the ith hyperfine component,

∆νD = 386 MHz = Doppler width (FWHM) contrained at T = 313K,

ξ = frequency stretch factor,

∆νL =Lorentzian width (FWHM).

The Lorentzian width was set to the natural width due to the absence of any

buffer gas. The ξ term produced a stretching factor to account for an nonlinearity

that was produced by a faulty initial guess. If ξ was not equal to one, the FSR was

adjusted accordingly and the process was repeated until it did.
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Appendix B. Pressure Broadening Data

This appendix contains the rest of the data acquired for this work. A scientist is

forced in the process of publication to pick their favorite set of data, but that is like

picking your favorite child. This appendix is the opportunity of my other children to

share what they have to offer with the world.

D1 Broadening & Shift Data
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Figure 36. Cesium D1 transition with increase pressures of helium (a)
and the resulting widths (b) and shifts (c).
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Figure 37. Cesium D1 transition with increase pressures of neon (a) and
the resulting widths (b) and shifts (c).
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Figure 38. Cesium D1 transition with increase pressures of argon (a) and
the resulting widths (b) and shifts (c).
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Figure 39. Cesium D1 transition with increase pressures of krypton (a)
and the resulting widths (b) and shifts (c).
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Figure 40. Cesium D1 transition with increase pressures of xenon (a)
and the resulting widths (b) and shifts (c).
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Figure 41. Cesium D1 transition with increase pressures of H2 (a) and
the resulting widths (b) and shifts (c).
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Figure 42. Cesium D1 transition with increase pressures of HD (a) and
the resulting widths (b) and shifts (c).
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Figure 43. Cesium D1 transition with increase pressures of D2 (a) and
the resulting widths (b) and shifts (c).
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Figure 44. Cesium D1 transition with increase pressures of CH4 (a) and
the resulting widths (b) and shifts (c).
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Figure 45. Cesium D1 transition with increase pressures of CF4 (a) and
the resulting widths (b) and shifts (c).
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Figure 46. Cesium D1 transition with increase pressures of C2H6 (a) and
the resulting widths (b) and shifts (c).
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D2 Broadening & Shift Data
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Figure 47. Cesium D2 transition with increase pressures of He (a) and
the resulting widths (b) and shifts (c).
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Figure 48. Cesium D2 transition with increase pressures of 3He (a) and
the resulting widths (b) and shifts (c).
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Figure 49. Cesium D2 transition with increase pressures of Ne (a) and
the resulting widths (b) and shifts (c).
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Figure 50. Cesium D2 transition with increase pressures of Ar (a) and
the resulting widths (b) and shifts (c).
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Figure 51. Cesium D2 transition with increase pressures of Kr (a) and
the resulting widths (b) and shifts (c).
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Figure 52. Cesium D2 transition with increase pressures of Xe (a) and
the resulting widths (b) and shifts (c).
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Figure 53. Cesium D2 transition with increase pressures of H2 (a) and
the resulting widths (b) and shifts (c).
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Figure 54. Cesium D2 transition with increase pressures of HD (a) and
the resulting widths (b) and shifts (c).
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Figure 55. Cesium D2 transition with increase pressures of D2 (a) and
the resulting widths (b) and shifts (c).
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Figure 56. Cesium D2 transition with increase pressures of CH4 (a) and
the resulting widths (b) and shifts (c).
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Figure 57. Cesium D2 transition with increase pressures of CF4 (a) and
the resulting widths (b) and shifts (c).
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Figure 58. Cesium D2 transition with increase pressures of C2H6 (a) and
the resulting widths (b) and shifts (c).
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Appendix C. Spin Orbit Data

This appendix contains the rest of the data acquired for the measurement of the

spin-orbit rates.
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Figure 59. The ratio of the intensities for satellite to parent states of H2

(a) HD (b) and D2 (c).
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Figure 60. The ratio of the intensities for satellite to parent states of
CH4 (a) CF4 (b) and C2H6 (c).
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Figure 61. The ratio of the intensities for satellite to parent states of N2
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